766 lines
26 KiB
Rust
766 lines
26 KiB
Rust
mod tree_node;
|
|
|
|
use crate::tokenizer::{
|
|
token::{Keyword, Symbol, Token, TokenType},
|
|
Tokenizer, TokenizerBuffer, TokenizerError,
|
|
};
|
|
use std::io::SeekFrom;
|
|
use thiserror::Error;
|
|
use tree_node::*;
|
|
|
|
#[derive(Debug, Error)]
|
|
pub enum ParseError {
|
|
#[error(transparent)]
|
|
TokenizerError(#[from] TokenizerError),
|
|
#[error("Unexpected token\n\nLine: {0}, Column: {1}\nToken: {2}\n", token.line, token.column, token.token_type)]
|
|
UnexpectedToken { token: Token },
|
|
#[error("Duplicated Identifer\n\nLine: {0}, Column: {1}\nToken: {2}\n", token.line, token.column, token.token_type)]
|
|
DuplicateIdentifier { token: Token },
|
|
#[error("Invalid Syntax\n\nLine: {0}, Column: {1}\nReason: {reason}", token.line, token.column)]
|
|
InvalidSyntax { token: Token, reason: String },
|
|
#[error("This keyword is not yet implemented\n\nLine: {0}, Column: {1}\nToken: {2}\n", token.line, token.column, token.token_type)]
|
|
UnsupportedKeyword { token: Token },
|
|
#[error("Unexpected EOF")]
|
|
UnexpectedEOF,
|
|
}
|
|
|
|
macro_rules! self_matches_peek {
|
|
($self:ident, $pattern:pat) => {
|
|
matches!($self.tokenizer.peek()?, Some(Token { token_type: $pattern, .. }))
|
|
};
|
|
($self:ident, $pattern:pat if $cond:expr) => {
|
|
matches!($self.tokenizer.peek()?, Some(Token { token_type: $pattern, .. }) if $cond)
|
|
};
|
|
}
|
|
|
|
macro_rules! token_from_option {
|
|
($token:expr) => {
|
|
match $token {
|
|
Some(ref token) => token.clone(),
|
|
None => return Err(ParseError::UnexpectedEOF),
|
|
}
|
|
};
|
|
}
|
|
|
|
macro_rules! extract_token_data {
|
|
($token:ident, $pattern:pat, $extraction:expr) => {
|
|
match $token.token_type {
|
|
$pattern => $extraction,
|
|
_ => {
|
|
return Err(ParseError::UnexpectedToken {
|
|
token: $token.clone(),
|
|
})
|
|
}
|
|
}
|
|
};
|
|
($token:expr, $pattern:pat, $extraction:expr) => {
|
|
match $token.token_type {
|
|
$pattern => $extraction,
|
|
_ => {
|
|
return Err(ParseError::UnexpectedToken {
|
|
token: $token.clone(),
|
|
})
|
|
}
|
|
}
|
|
};
|
|
}
|
|
|
|
macro_rules! self_matches_current {
|
|
($self:ident, $pattern:pat) => {
|
|
matches!($self.current_token, Some(Token { token_type: $pattern, .. }))
|
|
};
|
|
($self:ident, $pattern:pat if $cond:expr) => {
|
|
matches!($self.current_token, Some(Token { token_type: $pattern, .. }) if $cond)
|
|
};
|
|
}
|
|
|
|
macro_rules! token_matches {
|
|
($token:ident, $pattern:pat) => {
|
|
matches!($token.token_type, $pattern)
|
|
};
|
|
($token:expr, $pattern:pat) => {
|
|
matches!($token.token_type, $pattern)
|
|
};
|
|
($token:ident, $pattern:pat if $cond:expr) => {
|
|
matches!($token.token_type, $pattern if $cond)
|
|
};
|
|
($token:expr, $pattern:pat if $cond:expr) => {
|
|
matches!($token.token_type, $pattern if $cond)
|
|
};
|
|
}
|
|
|
|
pub struct Parser {
|
|
tokenizer: TokenizerBuffer,
|
|
current_token: Option<Token>,
|
|
}
|
|
|
|
impl Parser {
|
|
pub fn new(tokenizer: Tokenizer) -> Self {
|
|
Parser {
|
|
tokenizer: TokenizerBuffer::new(tokenizer),
|
|
current_token: None,
|
|
}
|
|
}
|
|
|
|
/// Parses all the input from the tokenizer buffer and returns the resulting expression
|
|
/// Expressions are returned in a root block expression node
|
|
pub fn parse_all(&mut self) -> Result<Option<tree_node::Expression>, ParseError> {
|
|
let mut expressions = Vec::<Expression>::new();
|
|
|
|
while let Some(expression) = self.parse()? {
|
|
expressions.push(expression);
|
|
}
|
|
|
|
Ok(Some(Expression::BlockExpression(BlockExpression(
|
|
expressions,
|
|
))))
|
|
}
|
|
|
|
/// Parses the input from the tokenizer buffer and returns the resulting expression
|
|
pub fn parse(&mut self) -> Result<Option<tree_node::Expression>, ParseError> {
|
|
self.assign_next()?;
|
|
self.expression()
|
|
}
|
|
|
|
/// Assigns the next token in the tokenizer buffer to the current token
|
|
fn assign_next(&mut self) -> Result<(), ParseError> {
|
|
self.current_token = self.tokenizer.next()?;
|
|
Ok(())
|
|
}
|
|
|
|
/// Calls `assign_next` and returns the next token in the tokenizer buffer
|
|
fn get_next(&mut self) -> Result<Option<&Token>, ParseError> {
|
|
self.assign_next()?;
|
|
Ok(self.current_token.as_ref())
|
|
}
|
|
|
|
fn expression(&mut self) -> Result<Option<tree_node::Expression>, ParseError> {
|
|
macro_rules! matches_keyword {
|
|
($keyword:expr, $($pattern:pat),+) => {
|
|
matches!($keyword, $($pattern)|+)
|
|
};
|
|
}
|
|
|
|
let Some(current_token) = self.current_token.as_ref() else {
|
|
return Ok(None);
|
|
};
|
|
|
|
if token_matches!(current_token, TokenType::EOF) {
|
|
return Ok(None);
|
|
}
|
|
|
|
let expr = Some(match current_token.token_type {
|
|
// match unsupported keywords
|
|
TokenType::Keyword(e)
|
|
if matches_keyword!(
|
|
e,
|
|
Keyword::Import,
|
|
Keyword::Export,
|
|
Keyword::Enum,
|
|
Keyword::If,
|
|
Keyword::Else
|
|
) =>
|
|
{
|
|
return Err(ParseError::UnsupportedKeyword {
|
|
token: current_token.clone(),
|
|
})
|
|
}
|
|
|
|
// match declarations with a `let` keyword
|
|
TokenType::Keyword(Keyword::Let) => self.declaration()?,
|
|
|
|
// match functions with a `fn` keyword
|
|
TokenType::Keyword(Keyword::Fn) => Expression::FunctionExpression(self.function()?),
|
|
|
|
// match a variable expression with opening parenthesis
|
|
TokenType::Identifier(_)
|
|
if self_matches_peek!(self, TokenType::Symbol(Symbol::LParen)) =>
|
|
{
|
|
Expression::InvocationExpression(self.invocation()?)
|
|
}
|
|
|
|
// match variable expressions with an identifier
|
|
TokenType::Identifier(ref id) => Expression::Variable(id.clone()),
|
|
|
|
// match block expressions with a `{` symbol
|
|
TokenType::Symbol(Symbol::LBrace) => Expression::BlockExpression(self.block()?),
|
|
|
|
// match literal expressions with a semi-colon afterwards
|
|
TokenType::Number(_) | TokenType::String(_) => Expression::Literal(self.literal()?),
|
|
|
|
// match priority expressions with a left parenthesis
|
|
TokenType::Symbol(Symbol::LParen) => Expression::PriorityExpression(self.priority()?),
|
|
|
|
_ => {
|
|
return Err(ParseError::UnexpectedToken {
|
|
token: current_token.clone(),
|
|
})
|
|
}
|
|
});
|
|
|
|
let Some(expr) = expr else {
|
|
return Ok(None);
|
|
};
|
|
|
|
if self_matches_peek!(self, TokenType::Symbol(s) if s.is_operator()) {
|
|
return Ok(Some(Expression::BinaryExpression(self.binary(expr)?)));
|
|
}
|
|
|
|
// step 2: check if the next token is an operator and if we should parse a binary expression with the previous expression
|
|
|
|
Ok(Some(expr))
|
|
}
|
|
|
|
fn get_binary_child_node(&mut self) -> Result<tree_node::Expression, ParseError> {
|
|
let current_token = token_from_option!(self.current_token);
|
|
|
|
match current_token.token_type {
|
|
// A literal number
|
|
TokenType::Number(_) => self.literal().map(Expression::Literal),
|
|
// A plain variable
|
|
TokenType::Identifier(ident)
|
|
if !self_matches_peek!(self, TokenType::Symbol(Symbol::LParen)) =>
|
|
{
|
|
Ok(Expression::Variable(ident))
|
|
}
|
|
// A priority expression ( -> (1 + 2) <- + 3 )
|
|
TokenType::Symbol(Symbol::LParen) => {
|
|
self.priority().map(Expression::PriorityExpression)
|
|
}
|
|
// A function invocation
|
|
TokenType::Identifier(_)
|
|
if self_matches_peek!(self, TokenType::Symbol(Symbol::LParen)) =>
|
|
{
|
|
self.invocation().map(Expression::InvocationExpression)
|
|
}
|
|
_ => Err(ParseError::UnexpectedToken {
|
|
token: current_token.clone(),
|
|
}),
|
|
}
|
|
}
|
|
|
|
/// Handles mathmatical expressions in the explicit order of PEMDAS
|
|
fn binary(&mut self, previous: Expression) -> Result<BinaryExpression, ParseError> {
|
|
macro_rules! min {
|
|
($a:expr, $b:expr) => {
|
|
if $a < $b {
|
|
$a
|
|
} else {
|
|
$b
|
|
}
|
|
};
|
|
}
|
|
|
|
// We cannot use recursion here, as we need to handle the precedence of the operators
|
|
// We need to use a loop to parse the binary expressions.
|
|
|
|
let mut current_token = token_from_option!(self.get_next()?).clone();
|
|
|
|
// first, make sure the previous expression supports binary expressions
|
|
match previous {
|
|
Expression::BinaryExpression(_) // 1 + 2 + 3
|
|
| Expression::InvocationExpression(_) // add() + 3
|
|
| Expression::PriorityExpression(_) // (1 + 2) + 3
|
|
| Expression::Literal(Literal::Number(_)) // 1 + 2 (no addition of strings)
|
|
| Expression::Variable(_) // x + 2
|
|
| Expression::Negation(_) // -1 + 2
|
|
=> {}
|
|
_ => {
|
|
return Err(ParseError::InvalidSyntax {
|
|
token: current_token.clone(),
|
|
reason: "Invalid expression for binary operation".to_owned(),
|
|
})
|
|
}
|
|
}
|
|
|
|
let mut expressions = vec![previous]; // 1, 2, 3
|
|
|
|
// operators Vec should be `expressions.len() - 1`
|
|
let mut operators = Vec::<Symbol>::new(); // +, +
|
|
|
|
// build the expressions and operators vectors
|
|
while token_matches!(current_token, TokenType::Symbol(s) if s.is_operator()) {
|
|
// We are guaranteed to have an operator symbol here as we checked in the while loop
|
|
let operator = extract_token_data!(current_token, TokenType::Symbol(ref s), s.clone());
|
|
operators.push(operator);
|
|
self.assign_next()?;
|
|
expressions.push(self.get_binary_child_node()?);
|
|
current_token = token_from_option!(self.get_next()?).clone();
|
|
}
|
|
|
|
// validate the vectors and make sure operators.len() == expressions.len() - 1
|
|
if operators.len() != expressions.len() - 1 {
|
|
return Err(ParseError::InvalidSyntax {
|
|
token: current_token.clone(),
|
|
reason: "Invalid number of operators".to_owned(),
|
|
});
|
|
}
|
|
|
|
// Loop through operators, and build the binary expressions for exponential operators only
|
|
for (i, operator) in operators.iter().enumerate() {
|
|
if operator == &Symbol::Caret {
|
|
let left = expressions.remove(min!(i, expressions.len() - 1));
|
|
let right = expressions.remove(min!(i, expressions.len() - 1));
|
|
expressions.insert(
|
|
min!(i, expressions.len()),
|
|
Expression::BinaryExpression(BinaryExpression::Exponent(
|
|
Box::new(left),
|
|
Box::new(right),
|
|
)),
|
|
);
|
|
}
|
|
}
|
|
|
|
// remove all the exponential operators from the operators vector
|
|
operators.retain(|symbol| symbol != &Symbol::Caret);
|
|
|
|
// Loop through operators, and build the binary expressions for multiplication and division operators
|
|
for (i, operator) in operators.iter().enumerate() {
|
|
if operator == &Symbol::Asterisk || operator == &Symbol::Slash {
|
|
let left = expressions.remove(min!(i, expressions.len() - 1));
|
|
let right = expressions.remove(min!(i, expressions.len() - 1));
|
|
|
|
match operator {
|
|
Symbol::Asterisk => expressions.insert(
|
|
min!(i, expressions.len()),
|
|
Expression::BinaryExpression(BinaryExpression::Multiply(
|
|
Box::new(left),
|
|
Box::new(right),
|
|
)),
|
|
),
|
|
Symbol::Slash => expressions.insert(
|
|
min!(i, expressions.len()),
|
|
Expression::BinaryExpression(BinaryExpression::Divide(
|
|
Box::new(left),
|
|
Box::new(right),
|
|
)),
|
|
),
|
|
// safety: we have already checked for the operator
|
|
_ => unreachable!(),
|
|
}
|
|
}
|
|
}
|
|
|
|
// remove all the multiplication and division operators from the operators vector
|
|
operators.retain(|symbol| symbol != &Symbol::Asterisk && symbol != &Symbol::Slash);
|
|
|
|
// Loop through operators, and build the binary expressions for addition and subtraction operators
|
|
for (i, operator) in operators.iter().enumerate() {
|
|
if operator == &Symbol::Plus || operator == &Symbol::Minus {
|
|
let left = expressions.remove(min!(i, expressions.len() - 1));
|
|
let right = expressions.remove(min!(i, expressions.len() - 1));
|
|
|
|
match operator {
|
|
Symbol::Plus => expressions.insert(
|
|
min!(i, expressions.len()),
|
|
Expression::BinaryExpression(BinaryExpression::Add(
|
|
Box::new(left),
|
|
Box::new(right),
|
|
)),
|
|
),
|
|
Symbol::Minus => expressions.insert(
|
|
min!(i, expressions.len()),
|
|
Expression::BinaryExpression(BinaryExpression::Subtract(
|
|
Box::new(left),
|
|
Box::new(right),
|
|
)),
|
|
),
|
|
// safety: we have already checked for the operator
|
|
_ => unreachable!(),
|
|
}
|
|
}
|
|
}
|
|
|
|
// remove all the addition and subtraction operators from the operators vector
|
|
operators.retain(|symbol| symbol != &Symbol::Plus && symbol != &Symbol::Minus);
|
|
|
|
// Ensure there is only one expression left in the expressions vector, and no operators left
|
|
if expressions.len() != 1 || !operators.is_empty() {
|
|
return Err(ParseError::InvalidSyntax {
|
|
token: current_token.clone(),
|
|
reason: "Invalid number of operators".to_owned(),
|
|
});
|
|
}
|
|
|
|
// Edge case. If the current token is a semi-colon, we need to set current token to the previous token
|
|
if token_matches!(current_token, TokenType::Symbol(Symbol::Semicolon)) {
|
|
self.tokenizer.seek(SeekFrom::Current(-1))?;
|
|
}
|
|
|
|
// Ensure the last expression is a binary expression
|
|
match expressions.pop().unwrap() {
|
|
Expression::BinaryExpression(binary) => Ok(binary),
|
|
_ => unreachable!(),
|
|
}
|
|
}
|
|
|
|
fn priority(&mut self) -> Result<Box<Expression>, ParseError> {
|
|
let current_token = token_from_option!(self.current_token);
|
|
if !token_matches!(current_token, TokenType::Symbol(Symbol::LParen)) {
|
|
return Err(ParseError::UnexpectedToken {
|
|
token: current_token.clone(),
|
|
});
|
|
}
|
|
|
|
let expression = self.parse()?.ok_or(ParseError::UnexpectedEOF)?;
|
|
|
|
// make sure the next token is a right parenthesis
|
|
let current_token = token_from_option!(self.get_next()?);
|
|
if !token_matches!(current_token, TokenType::Symbol(Symbol::RParen)) {
|
|
return Err(ParseError::UnexpectedToken {
|
|
token: current_token.clone(),
|
|
});
|
|
}
|
|
|
|
Ok(Box::new(expression))
|
|
}
|
|
|
|
fn invocation(&mut self) -> Result<InvocationExpression, ParseError> {
|
|
let identifier = extract_token_data!(
|
|
token_from_option!(self.current_token),
|
|
TokenType::Identifier(ref id),
|
|
id.clone()
|
|
);
|
|
|
|
// Ensure the next token is a left parenthesis
|
|
let current_token = token_from_option!(self.get_next()?);
|
|
if !token_matches!(current_token, TokenType::Symbol(Symbol::LParen)) {
|
|
return Err(ParseError::UnexpectedToken {
|
|
token: current_token.clone(),
|
|
});
|
|
}
|
|
|
|
let mut arguments = Vec::<Expression>::new();
|
|
// We need to make sure the expressions are NOT BlockExpressions, as they are not allowed
|
|
|
|
while !token_matches!(
|
|
token_from_option!(self.get_next()?),
|
|
TokenType::Symbol(Symbol::RParen)
|
|
) {
|
|
let current_token = token_from_option!(self.current_token);
|
|
let expression = self.expression()?.ok_or(ParseError::UnexpectedEOF)?;
|
|
|
|
if let Expression::BlockExpression(_) = expression {
|
|
return Err(ParseError::InvalidSyntax {
|
|
token: current_token,
|
|
reason: "Block expressions are not allowed in function invocations".to_owned(),
|
|
});
|
|
}
|
|
|
|
arguments.push(expression);
|
|
|
|
// make sure the next token is a comma or right parenthesis
|
|
if !self_matches_peek!(self, TokenType::Symbol(Symbol::Comma))
|
|
&& !self_matches_peek!(self, TokenType::Symbol(Symbol::RParen))
|
|
{
|
|
return Err(ParseError::UnexpectedToken {
|
|
token: token_from_option!(self.get_next()?).clone(),
|
|
});
|
|
}
|
|
|
|
// edge case: if the next token is not a right parenthesis, increment the current token
|
|
//
|
|
// This will allow the loop to break on a right parenthesis with the next iteration
|
|
// which is incremented by the loop
|
|
if !self_matches_peek!(self, TokenType::Symbol(Symbol::RParen)) {
|
|
self.assign_next()?;
|
|
}
|
|
}
|
|
|
|
Ok(InvocationExpression {
|
|
name: identifier,
|
|
arguments,
|
|
})
|
|
}
|
|
|
|
fn block(&mut self) -> Result<BlockExpression, ParseError> {
|
|
let mut expressions = Vec::<Expression>::new();
|
|
let current_token = token_from_option!(self.current_token);
|
|
|
|
// sanity check: make sure the current token is a left brace
|
|
if !token_matches!(current_token, TokenType::Symbol(Symbol::LBrace)) {
|
|
return Err(ParseError::UnexpectedToken {
|
|
token: current_token.clone(),
|
|
});
|
|
}
|
|
|
|
while !token_matches!(
|
|
token_from_option!(self.get_next()?),
|
|
TokenType::Symbol(Symbol::RBrace)
|
|
) {
|
|
let expression = self.expression()?.ok_or(ParseError::UnexpectedEOF)?;
|
|
expressions.push(expression);
|
|
}
|
|
|
|
Ok(BlockExpression(expressions))
|
|
}
|
|
|
|
fn declaration(&mut self) -> Result<Expression, ParseError> {
|
|
let current_token = token_from_option!(self.current_token);
|
|
if !self_matches_current!(self, TokenType::Keyword(Keyword::Let)) {
|
|
return Err(ParseError::UnexpectedToken {
|
|
token: current_token.clone(),
|
|
});
|
|
}
|
|
let identifier = extract_token_data!(
|
|
token_from_option!(self.get_next()?),
|
|
TokenType::Identifier(ref id),
|
|
id.clone()
|
|
);
|
|
|
|
let current_token = token_from_option!(self.get_next()?).clone();
|
|
|
|
if !token_matches!(current_token, TokenType::Symbol(Symbol::Assign)) {
|
|
return Err(ParseError::UnexpectedToken {
|
|
token: current_token,
|
|
});
|
|
}
|
|
|
|
let assignment_expression = self.parse()?.ok_or(ParseError::UnexpectedEOF)?;
|
|
|
|
// make sure the next token is a semi-colon
|
|
let current_token = token_from_option!(self.get_next()?);
|
|
if !token_matches!(current_token, TokenType::Symbol(Symbol::Semicolon)) {
|
|
return Err(ParseError::UnexpectedToken {
|
|
token: current_token.clone(),
|
|
});
|
|
}
|
|
|
|
Ok(Expression::DeclarationExpression(
|
|
identifier,
|
|
Box::new(assignment_expression),
|
|
))
|
|
}
|
|
|
|
fn literal(&mut self) -> Result<Literal, ParseError> {
|
|
let current_token = token_from_option!(self.current_token);
|
|
let literal = match current_token.token_type {
|
|
TokenType::Number(ref num) => Literal::Number(num.clone()),
|
|
TokenType::String(ref string) => Literal::String(string.clone()),
|
|
_ => {
|
|
return Err(ParseError::UnexpectedToken {
|
|
token: current_token.clone(),
|
|
})
|
|
}
|
|
};
|
|
|
|
Ok(literal)
|
|
}
|
|
|
|
fn function(&mut self) -> Result<FunctionExpression, ParseError> {
|
|
let current_token = token_from_option!(self.current_token);
|
|
// Sanify check that the current token is a `fn` keyword
|
|
if !self_matches_current!(self, TokenType::Keyword(Keyword::Fn)) {
|
|
return Err(ParseError::UnexpectedToken {
|
|
token: current_token.clone(),
|
|
});
|
|
}
|
|
|
|
let fn_ident = extract_token_data!(
|
|
token_from_option!(self.get_next()?),
|
|
TokenType::Identifier(ref id),
|
|
id.clone()
|
|
);
|
|
|
|
// make sure next token is a left parenthesis
|
|
let current_token = token_from_option!(self.get_next()?);
|
|
if !token_matches!(current_token, TokenType::Symbol(Symbol::LParen)) {
|
|
return Err(ParseError::UnexpectedToken {
|
|
token: current_token.clone(),
|
|
});
|
|
}
|
|
|
|
let mut arguments = Vec::<String>::new();
|
|
|
|
// iterate through the arguments. While expression while increment the current token
|
|
// with the `token_from_option!(self.get_next()?)` macro
|
|
while !token_matches!(
|
|
token_from_option!(self.get_next()?),
|
|
TokenType::Symbol(Symbol::RParen)
|
|
) {
|
|
let current_token = token_from_option!(self.current_token);
|
|
let argument =
|
|
extract_token_data!(current_token, TokenType::Identifier(ref id), id.clone());
|
|
|
|
if arguments.contains(&argument) {
|
|
return Err(ParseError::DuplicateIdentifier {
|
|
token: current_token.clone(),
|
|
});
|
|
}
|
|
|
|
arguments.push(argument);
|
|
|
|
// make sure the next token is a comma or right parenthesis
|
|
if !self_matches_peek!(self, TokenType::Symbol(Symbol::Comma))
|
|
&& !self_matches_peek!(self, TokenType::Symbol(Symbol::RParen))
|
|
{
|
|
return Err(ParseError::UnexpectedToken {
|
|
token: token_from_option!(self.get_next()?).clone(),
|
|
});
|
|
}
|
|
|
|
// edge case: if the next token is not a right parenthesis, increment the current token
|
|
//
|
|
// This will allow the loop to break on a right parenthesis with the next iteration
|
|
// which is incremented by the loop
|
|
if !self_matches_peek!(self, TokenType::Symbol(Symbol::RParen)) {
|
|
self.assign_next()?;
|
|
}
|
|
}
|
|
|
|
// make sure the next token is a left brace
|
|
let current_token = token_from_option!(self.get_next()?);
|
|
if !token_matches!(current_token, TokenType::Symbol(Symbol::LBrace)) {
|
|
return Err(ParseError::UnexpectedToken {
|
|
token: current_token.clone(),
|
|
});
|
|
};
|
|
|
|
Ok(FunctionExpression {
|
|
name: fn_ident,
|
|
arguments,
|
|
body: self.block()?,
|
|
})
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use super::*;
|
|
use anyhow::Result;
|
|
|
|
macro_rules! parser {
|
|
($input:expr) => {
|
|
Parser::new(Tokenizer::from($input.to_owned()))
|
|
};
|
|
}
|
|
|
|
#[test]
|
|
fn test_unsupported_keywords() -> Result<()> {
|
|
let mut parser = parser!("import x;");
|
|
assert!(parser.parse().is_err());
|
|
|
|
let mut parser = parser!("export x;");
|
|
assert!(parser.parse().is_err());
|
|
|
|
let mut parser = parser!("enum x;");
|
|
assert!(parser.parse().is_err());
|
|
|
|
let mut parser = parser!("if x {}");
|
|
assert!(parser.parse().is_err());
|
|
|
|
let mut parser = parser!("else {}");
|
|
assert!(parser.parse().is_err());
|
|
|
|
Ok(())
|
|
}
|
|
|
|
#[test]
|
|
fn test_declarations() -> Result<()> {
|
|
let input = r#"
|
|
let x = 5;
|
|
// The below line should fail
|
|
let y = 234
|
|
"#;
|
|
let tokenizer = Tokenizer::from(input.to_owned());
|
|
let mut parser = Parser::new(tokenizer);
|
|
|
|
let expression = parser.parse()?.unwrap();
|
|
|
|
assert_eq!("(let x = 5)", expression.to_string());
|
|
|
|
assert!(parser.parse().is_err());
|
|
|
|
Ok(())
|
|
}
|
|
|
|
#[test]
|
|
fn test_block() -> Result<()> {
|
|
let input = r#"
|
|
{
|
|
let x = 5;
|
|
let y = 10;
|
|
}
|
|
"#;
|
|
let tokenizer = Tokenizer::from(input.to_owned());
|
|
let mut parser = Parser::new(tokenizer);
|
|
|
|
let expression = parser.parse()?.unwrap();
|
|
|
|
assert_eq!("{ (let x = 5); (let y = 10); }", expression.to_string());
|
|
|
|
Ok(())
|
|
}
|
|
|
|
#[test]
|
|
fn test_function_expression() -> Result<()> {
|
|
let input = r#"
|
|
// This is a function. The parser is starting to get more complex
|
|
fn add(x, y) {
|
|
let z = x;
|
|
}
|
|
"#;
|
|
|
|
let tokenizer = Tokenizer::from(input.to_owned());
|
|
let mut parser = Parser::new(tokenizer);
|
|
|
|
let expression = parser.parse()?.unwrap();
|
|
|
|
assert_eq!(
|
|
"(fn add(x, y) { { (let z = x); } })",
|
|
expression.to_string()
|
|
);
|
|
|
|
Ok(())
|
|
}
|
|
|
|
#[test]
|
|
fn test_function_invocation() -> Result<()> {
|
|
let input = r#"
|
|
add();
|
|
"#;
|
|
|
|
let tokenizer = Tokenizer::from(input.to_owned());
|
|
let mut parser = Parser::new(tokenizer);
|
|
|
|
let expression = parser.parse()?.unwrap();
|
|
|
|
assert_eq!("add()", expression.to_string());
|
|
|
|
Ok(())
|
|
}
|
|
|
|
#[test]
|
|
fn test_priority_expression() -> Result<()> {
|
|
let input = r#"
|
|
let x = (4);
|
|
"#;
|
|
|
|
let tokenizer = Tokenizer::from(input.to_owned());
|
|
let mut parser = Parser::new(tokenizer);
|
|
|
|
let expression = parser.parse()?.unwrap();
|
|
|
|
assert_eq!("(let x = (4))", expression.to_string());
|
|
|
|
Ok(())
|
|
}
|
|
|
|
#[test]
|
|
fn test_binary() -> Result<()> {
|
|
let expr = parser!("1 + 3 ^ 5").parse()?.unwrap();
|
|
assert_eq!("(1 + (3 ^ 5))", expr.to_string());
|
|
|
|
let input = "4 ^ 2 + 3 ^ 2";
|
|
|
|
let expr = parser!(input).parse()?.unwrap();
|
|
println!("Original: {}\nTranscribed: {}", input, expr.to_string());
|
|
|
|
let expr = parser!("12 - 1 + 3 * 5").parse()?.unwrap();
|
|
|
|
assert_eq!("((12 - 1) + (3 * 5))", expr.to_string());
|
|
|
|
Ok(())
|
|
}
|
|
}
|