2 Commits

Author SHA1 Message Date
20f0f4b9a1 working tuple types 2025-12-30 00:58:02 -07:00
5a88befac9 tuple return types just about implemented 2025-12-30 00:32:55 -07:00
2 changed files with 484 additions and 81 deletions

View File

@@ -176,18 +176,19 @@ mod test {
"
j main
getPair:
move r15 sp
push ra
push 10
push 20
move r15 1
j __internal_L1
__internal_L1:
pop ra
sub r0 sp 3
get ra db r0
j ra
main:
jal getPair
pop r9
pop r8
move sp r15
"
}
);
@@ -213,17 +214,19 @@ mod test {
"
j main
getPair:
move r15 sp
push ra
push 5
push 15
move r15 1
j __internal_L1
__internal_L1:
pop ra
sub r0 sp 3
get ra db r0
j ra
main:
jal getPair
pop r0
pop r8
move sp r15
"
}
);
@@ -249,20 +252,21 @@ mod test {
"
j main
getTriple:
move r15 sp
push ra
push 1
push 2
push 3
move r15 1
j __internal_L1
__internal_L1:
pop ra
sub r0 sp 4
get ra db r0
j ra
main:
jal getTriple
pop r10
pop r9
pop r8
move sp r15
"
}
);
@@ -278,8 +282,8 @@ mod test {
fn getPair() {
return (42, 84);
};
let i = 0;
let j = 0;
let i = 1;
let j = 2;
(i, j) = getPair();
"#
);
@@ -290,28 +294,246 @@ mod test {
"
j main
getPair:
move r15 sp
push ra
push 42
push 84
move r15 1
j __internal_L1
__internal_L1:
pop ra
sub r0 sp 3
get ra db r0
j ra
main:
move r8 0
move r9 0
push r8
push r9
move r8 1
move r9 2
jal getPair
pop r9
pop r8
pop r9
pop r8
move sp r15
"
}
);
Ok(())
}
#[test]
fn test_tuple_return_mismatch() -> anyhow::Result<()> {
let errors = compile!(
result
r#"
fn doSomething() {
return (1, 2, 3);
};
let (x, y) = doSomething();
"#
);
// Should have exactly one error about tuple size mismatch
assert_eq!(errors.len(), 1);
// Check for the specific TupleSizeMismatch error
match &errors[0] {
crate::Error::TupleSizeMismatch(func_name, expected_size, actual_count, _) => {
assert_eq!(func_name.as_ref(), "doSomething");
assert_eq!(*expected_size, 3);
assert_eq!(*actual_count, 2);
}
e => panic!("Expected TupleSizeMismatch error, got: {:?}", e),
}
Ok(())
}
#[test]
fn test_tuple_return_called_by_non_tuple_return() -> anyhow::Result<()> {
let compiled = compile!(
debug
r#"
fn doSomething() {
return (1, 2);
};
fn doSomethingElse() {
let (x, y) = doSomething();
return y;
};
let returnedValue = doSomethingElse();
"#
);
assert_eq!(
compiled,
indoc! {
"
j main
doSomething:
move r15 sp
push ra
push 1
push 2
move r15 1
sub r0 sp 3
get ra db r0
j ra
doSomethingElse:
push ra
jal doSomething
pop r9
pop r8
move sp r15
move r15 r9
j __internal_L2
__internal_L2:
pop ra
j ra
main:
jal doSomethingElse
move r8 r15
"
}
);
Ok(())
}
#[test]
fn test_non_tuple_return_called_by_tuple_return() -> anyhow::Result<()> {
let compiled = compile!(
debug
r#"
fn getValue() {
return 42;
};
fn getTuple() {
let x = getValue();
return (x, x);
};
let (a, b) = getTuple();
"#
);
assert_eq!(
compiled,
indoc! {
"
j main
getValue:
push ra
move r15 42
j __internal_L1
__internal_L1:
pop ra
j ra
getTuple:
move r15 sp
push ra
jal getValue
move r8 r15
push r8
push r8
move r15 1
sub r0 sp 3
get ra db r0
j ra
main:
jal getTuple
pop r9
pop r8
move sp r15
"
}
);
Ok(())
}
#[test]
fn test_tuple_literal_size_mismatch() -> anyhow::Result<()> {
let errors = compile!(
result
r#"
let (x, y) = (1, 2, 3);
"#
);
// Should have exactly one error about tuple size mismatch
assert_eq!(errors.len(), 1);
assert!(matches!(errors[0], crate::Error::Unknown(_, _)));
Ok(())
}
#[test]
fn test_multiple_tuple_returns_in_function() -> anyhow::Result<()> {
let compiled = compile!(
debug
r#"
fn getValue(x) {
if (x) {
return (1, 2);
} else {
return (3, 4);
}
};
let (a, b) = getValue(1);
"#
);
println!("Generated code:\n{}", compiled);
// Both returns are 2-tuples, should compile successfully
assert!(compiled.contains("getValue:"));
assert!(compiled.contains("move r15 "));
Ok(())
}
#[test]
fn test_tuple_return_with_expression() -> anyhow::Result<()> {
let compiled = compile!(
debug
r#"
fn add(x, y) {
return (x, y);
};
let (a, b) = add(5, 10);
"#
);
// Should compile - we're just passing the parameter variables through
assert!(compiled.contains("add:"));
assert!(compiled.contains("jal "));
Ok(())
}
#[test]
fn test_nested_function_tuple_calls() -> anyhow::Result<()> {
let compiled = compile!(
debug
r#"
fn inner() {
return (1, 2);
};
fn outer() {
let (x, y) = inner();
return (y, x);
};
let (a, b) = outer();
"#
);
// Both functions return tuples
assert!(compiled.contains("inner:"));
assert!(compiled.contains("outer:"));
Ok(())
}
}

View File

@@ -64,6 +64,11 @@ pub enum Error<'a> {
#[error("Attempted to re-assign a value to a device const `{0}`")]
DeviceAssignment(Cow<'a, str>, Span),
#[error(
"Function '{0}' returns a {1}-tuple, but you're trying to destructure into {2} variables"
)]
TupleSizeMismatch(Cow<'a, str>, usize, usize, Span),
#[error("{0}")]
Unknown(String, Option<Span>),
}
@@ -85,7 +90,8 @@ impl<'a> From<Error<'a>> for lsp_types::Diagnostic {
| InvalidDevice(_, span)
| ConstAssignment(_, span)
| DeviceAssignment(_, span)
| AgrumentMismatch(_, span) => Diagnostic {
| AgrumentMismatch(_, span)
| TupleSizeMismatch(_, _, _, span) => Diagnostic {
range: span.into(),
message: value.to_string(),
severity: Some(DiagnosticSeverity::ERROR),
@@ -143,6 +149,8 @@ pub struct Compiler<'a> {
pub parser: ASTParser<'a>,
function_locations: HashMap<Cow<'a, str>, usize>,
function_metadata: HashMap<Cow<'a, str>, Vec<Cow<'a, str>>>,
function_tuple_return_sizes: HashMap<Cow<'a, str>, usize>, // Track tuple return sizes
current_function_name: Option<Cow<'a, str>>, // Track the function currently being compiled
devices: HashMap<Cow<'a, str>, Cow<'a, str>>,
// This holds the IL code which will be used in the
@@ -156,6 +164,8 @@ pub struct Compiler<'a> {
label_counter: usize,
loop_stack: Vec<(Cow<'a, str>, Cow<'a, str>)>, // Stores (start_label, end_label)
current_return_label: Option<Cow<'a, str>>,
current_return_is_tuple: bool, // Track if the current function returns a tuple
current_function_sp_saved: bool, // Track if we've emitted the SP save for the current function
/// stores (IC10 `line_num`, `Vec<Span>`)
pub source_map: HashMap<usize, Vec<Span>>,
/// Accumulative errors from the compilation process
@@ -177,6 +187,10 @@ impl<'a> Compiler<'a> {
label_counter: 0,
loop_stack: Vec::new(),
current_return_label: None,
current_return_is_tuple: false,
current_function_sp_saved: false,
current_function_name: None,
function_tuple_return_sizes: HashMap::new(),
source_map: HashMap::new(),
errors: Vec::new(),
}
@@ -945,6 +959,7 @@ impl<'a> Compiler<'a> {
&mut self,
invoke_expr: &InvocationExpression<'a>,
parent_scope: &mut VariableScope<'a, '_>,
backup_registers: bool,
) -> Result<(), Error<'a>> {
let InvocationExpression { name, arguments } = invoke_expr;
@@ -965,8 +980,11 @@ impl<'a> Compiler<'a> {
}
let mut stack = VariableScope::scoped(parent_scope);
// backup all used registers to the stack
// Get the list of active registers (may or may not backup)
let active_registers = stack.registers();
// backup all used registers to the stack (unless this is for tuple return handling)
if backup_registers {
for register in &active_registers {
stack.add_variable(
Cow::from(format!("temp_{register}")),
@@ -978,6 +996,7 @@ impl<'a> Compiler<'a> {
Some(name.span),
)?;
}
}
for arg in arguments {
match &arg.node {
Expression::Literal(spanned_lit) => match &spanned_lit.node {
@@ -1074,13 +1093,15 @@ impl<'a> Compiler<'a> {
Some(name.span),
)?;
// pop all registers back
// pop all registers back (if they were backed up)
if backup_registers {
for register in active_registers.iter().rev() {
self.write_instruction(
Instruction::Pop(Operand::Register(*register)),
Some(name.span),
)?;
}
}
Ok(())
}
@@ -1101,7 +1122,21 @@ impl<'a> Compiler<'a> {
// Execute the function call
// Tuple values are on the stack, sp points after the last pushed value
// Pop them in reverse order (from end to beginning)
self.expression_function_invocation_with_invocation(invoke_expr, scope)?;
// We don't need to backup registers for tuple returns
self.expression_function_invocation_with_invocation(invoke_expr, scope, false)?;
// Validate tuple return size matches the declaration
let func_name = &invoke_expr.node.name.node;
if let Some(&expected_size) = self.function_tuple_return_sizes.get(func_name) {
if names.len() != expected_size {
self.errors.push(Error::TupleSizeMismatch(
func_name.clone(),
expected_size,
names.len(),
value.span,
));
}
}
// First pass: allocate variables in order
let mut var_locations = Vec::new();
@@ -1121,9 +1156,13 @@ impl<'a> Compiler<'a> {
var_locations.push(Some(var_location));
}
// Second pass: pop in reverse order and assign to locations
// Second pass: pop in reverse order through the list (since stack is LIFO)
// var_locations[0] is the first element (bottom of stack)
// var_locations[n-1] is the last element (top of stack)
// We pop from the top, so we iterate in reverse through var_locations
for (idx, var_loc_opt) in var_locations.iter().enumerate().rev() {
if let Some(var_location) = var_loc_opt {
match var_loc_opt {
Some(var_location) => {
let var_reg = self.resolve_register(&var_location)?;
// Pop from stack into the variable's register
@@ -1132,8 +1171,27 @@ impl<'a> Compiler<'a> {
Some(names[idx].span),
)?;
}
None => {
// Underscore: pop into temp register to discard
self.write_instruction(
Instruction::Pop(Operand::Register(
VariableScope::TEMP_STACK_REGISTER,
)),
Some(names[idx].span),
)?;
}
}
}
// Restore stack pointer to value saved at function entry
self.write_instruction(
Instruction::Move(
Operand::StackPointer,
Operand::Register(VariableScope::RETURN_REGISTER),
),
Some(value.span),
)?;
}
Expression::Tuple(tuple_expr) => {
// Direct tuple literal: (value1, value2, ...)
let tuple_elements = &tuple_expr.node;
@@ -1253,7 +1311,21 @@ impl<'a> Compiler<'a> {
// Execute the function call
// Tuple values are on the stack, sp points after the last pushed value
// Pop them in reverse order (from end to beginning)
self.expression_function_invocation_with_invocation(invoke_expr, scope)?;
// We don't need to backup registers for tuple returns
self.expression_function_invocation_with_invocation(invoke_expr, scope, false)?;
// Validate tuple return size matches the assignment
let func_name = &invoke_expr.node.name.node;
if let Some(&expected_size) = self.function_tuple_return_sizes.get(func_name) {
if names.len() != expected_size {
self.errors.push(Error::TupleSizeMismatch(
func_name.clone(),
expected_size,
names.len(),
value.span,
));
}
}
// First pass: look up variable locations
let mut var_locs = Vec::new();
@@ -1335,6 +1407,15 @@ impl<'a> Compiler<'a> {
}
}
}
// Restore stack pointer to value saved at function entry
self.write_instruction(
Instruction::Move(
Operand::StackPointer,
Operand::Register(VariableScope::RETURN_REGISTER),
),
Some(value.span),
)?;
}
Expression::Tuple(tuple_expr) => {
// Direct tuple literal: (value1, value2, ...)
@@ -2547,7 +2628,20 @@ impl<'a> Compiler<'a> {
// Record the stack offset where the tuple will start
let tuple_start_offset = scope.stack_offset();
// Allocate space on the stack for each tuple element
// First pass: Add temporary variables to scope for each tuple element
// This updates the scope's stack_offset so we can calculate ra position later
let mut temp_names = Vec::new();
for (i, _element) in tuple_elements.iter().enumerate() {
let temp_name = format!("__tuple_ret_{}", i);
scope.add_variable(
temp_name.clone().into(),
LocationRequest::Stack,
Some(span),
)?;
temp_names.push(temp_name);
}
// Second pass: Push the actual values onto the stack
for element in tuple_elements.iter() {
match &element.node {
Expression::Literal(lit) => {
@@ -2643,6 +2737,52 @@ impl<'a> Compiler<'a> {
),
Some(span),
)?;
// For tuple returns, ra is buried under the tuple values on the stack.
// Stack layout: [ra, val0, val1, val2, ...]
// Instead of popping and pushing, use Get to read ra from its stack position
// while leaving the tuple values in place.
// Calculate offset to ra from current stack position
// ra is at tuple_start_offset - 1, so offset = (current - tuple_start) + 1
let current_offset = scope.stack_offset();
let ra_offset_from_current = (current_offset - tuple_start_offset + 1) as i32;
// Use a temp register to read ra from the stack
if ra_offset_from_current > 0 {
self.write_instruction(
Instruction::Sub(
Operand::Register(VariableScope::TEMP_STACK_REGISTER),
Operand::StackPointer,
Operand::Number(ra_offset_from_current.into()),
),
Some(span),
)?;
self.write_instruction(
Instruction::Get(
Operand::ReturnAddress,
Operand::Device(Cow::from("db")),
Operand::Register(VariableScope::TEMP_STACK_REGISTER),
),
Some(span),
)?;
}
// Jump back to caller
self.write_instruction(Instruction::Jump(Operand::ReturnAddress), Some(span))?;
// Mark that we had a tuple return so the function declaration can skip return label cleanup
self.current_return_is_tuple = true;
// Record the tuple return size for validation at call sites
if let Some(func_name) = &self.current_function_name {
self.function_tuple_return_sizes
.insert(func_name.clone(), tuple_elements.len());
}
// Early return to skip the normal return label processing
return Ok(VariableLocation::Persistant(VariableScope::RETURN_REGISTER));
}
_ => {
return Err(Error::Unknown(
@@ -3272,6 +3412,23 @@ impl<'a> Compiler<'a> {
}
}
/// Check if a function body contains any tuple returns
fn has_tuple_return(body: &BlockExpression) -> bool {
for expr in &body.0 {
match &expr.node {
Expression::Return(Some(ret_expr)) => {
if let Expression::Tuple(_) = &ret_expr.node {
return true;
}
}
_ => {
// Could recursively check nested blocks, but for now just check direct returns
}
}
}
false
}
/// Compile a function declaration.
/// Calees are responsible for backing up any registers they wish to use.
fn expression_function(
@@ -3299,6 +3456,9 @@ impl<'a> Compiler<'a> {
arguments.iter().map(|a| a.node.clone()).collect(),
);
// Set the current function being compiled
self.current_function_name = Some(name.node.clone());
// Declare the function as a line identifier
self.write_instruction(Instruction::LabelDef(name.node.clone()), Some(span))?;
@@ -3360,6 +3520,18 @@ impl<'a> Compiler<'a> {
)?;
}
// If this function has tuple returns, save the SP to r15 before pushing ra
if Self::has_tuple_return(&body) {
self.write_instruction(
Instruction::Move(
Operand::Register(VariableScope::RETURN_REGISTER),
Operand::StackPointer,
),
Some(span),
)?;
self.current_function_sp_saved = true;
}
self.write_instruction(Instruction::Push(Operand::ReturnAddress), Some(span))?;
let return_label = self.next_label_name();
@@ -3413,6 +3585,9 @@ impl<'a> Compiler<'a> {
self.current_return_label = prev_return_label;
// Only write the return label if this function doesn't have a tuple return
// (tuple returns handle their own pop ra and return)
if !self.current_return_is_tuple {
self.write_instruction(Instruction::LabelDef(return_label.clone()), Some(span))?;
if ra_stack_offset == 1 {
@@ -3461,6 +3636,12 @@ impl<'a> Compiler<'a> {
}
self.write_instruction(Instruction::Jump(Operand::ReturnAddress), Some(span))?;
}
// Reset the flag for the next function
self.current_return_is_tuple = false;
self.current_function_sp_saved = false;
self.current_function_name = None;
Ok(())
}
}