8 Commits

6 changed files with 2066 additions and 66 deletions

View File

@@ -47,3 +47,4 @@ mod logic_expression;
mod loops; mod loops;
mod math_syscall; mod math_syscall;
mod syscall; mod syscall;
mod tuple_literals;

View File

@@ -0,0 +1,950 @@
#[cfg(test)]
mod test {
use indoc::indoc;
use pretty_assertions::assert_eq;
#[test]
fn test_tuple_literal_declaration() -> anyhow::Result<()> {
let compiled = compile!(
debug
r#"
let (x, y) = (1, 2);
"#
);
assert_eq!(
compiled,
indoc! {
"
j main
main:
move r8 1
move r9 2
"
}
);
Ok(())
}
#[test]
fn test_tuple_literal_declaration_with_underscore() -> anyhow::Result<()> {
let compiled = compile!(
debug
r#"
let (x, _) = (1, 2);
"#
);
assert_eq!(
compiled,
indoc! {
"
j main
main:
move r8 1
"
}
);
Ok(())
}
#[test]
fn test_tuple_literal_assignment() -> anyhow::Result<()> {
let compiled = compile!(
debug
r#"
let x = 0;
let y = 0;
(x, y) = (5, 10);
"#
);
assert_eq!(
compiled,
indoc! {
"
j main
main:
move r8 0
move r9 0
move r8 5
move r9 10
"
}
);
Ok(())
}
#[test]
fn test_tuple_literal_with_variables() -> anyhow::Result<()> {
let compiled = compile!(
debug
r#"
let a = 42;
let b = 99;
let (x, y) = (a, b);
"#
);
assert_eq!(
compiled,
indoc! {
"
j main
main:
move r8 42
move r9 99
move r10 r8
move r11 r9
"
}
);
Ok(())
}
#[test]
fn test_tuple_literal_three_elements() -> anyhow::Result<()> {
let compiled = compile!(
debug
r#"
let (x, y, z) = (1, 2, 3);
"#
);
assert_eq!(
compiled,
indoc! {
"
j main
main:
move r8 1
move r9 2
move r10 3
"
}
);
Ok(())
}
#[test]
fn test_tuple_literal_assignment_with_underscore() -> anyhow::Result<()> {
let compiled = compile!(
debug
r#"
let i = 0;
let x = 123;
(i, _) = (456, 789);
"#
);
assert_eq!(
compiled,
indoc! {
"
j main
main:
move r8 0
move r9 123
move r8 456
"
}
);
Ok(())
}
#[test]
fn test_tuple_return_simple() -> anyhow::Result<()> {
let compiled = compile!(
debug
r#"
fn getPair() {
return (10, 20);
};
let (x, y) = getPair();
"#
);
assert_eq!(
compiled,
indoc! {
"
j main
getPair:
move r15 sp
push ra
push 10
push 20
move r15 1
sub r0 sp 3
get ra db r0
j ra
main:
jal getPair
pop r9
pop r8
move sp r15
"
}
);
Ok(())
}
#[test]
fn test_tuple_return_with_underscore() -> anyhow::Result<()> {
let compiled = compile!(
debug
r#"
fn getPair() {
return (5, 15);
};
let (x, _) = getPair();
"#
);
assert_eq!(
compiled,
indoc! {
"
j main
getPair:
move r15 sp
push ra
push 5
push 15
move r15 1
sub r0 sp 3
get ra db r0
j ra
main:
jal getPair
pop r0
pop r8
move sp r15
"
}
);
Ok(())
}
#[test]
fn test_tuple_return_three_elements() -> anyhow::Result<()> {
let compiled = compile!(
debug
r#"
fn getTriple() {
return (1, 2, 3);
};
let (a, b, c) = getTriple();
"#
);
assert_eq!(
compiled,
indoc! {
"
j main
getTriple:
move r15 sp
push ra
push 1
push 2
push 3
move r15 1
sub r0 sp 4
get ra db r0
j ra
main:
jal getTriple
pop r10
pop r9
pop r8
move sp r15
"
}
);
Ok(())
}
#[test]
fn test_tuple_return_assignment() -> anyhow::Result<()> {
let compiled = compile!(
debug
r#"
fn getPair() {
return (42, 84);
};
let i = 1;
let j = 2;
(i, j) = getPair();
"#
);
assert_eq!(
compiled,
indoc! {
"
j main
getPair:
move r15 sp
push ra
push 42
push 84
move r15 1
sub r0 sp 3
get ra db r0
j ra
main:
move r8 1
move r9 2
jal getPair
pop r9
pop r8
move sp r15
"
}
);
Ok(())
}
#[test]
fn test_tuple_return_mismatch() -> anyhow::Result<()> {
let errors = compile!(
result
r#"
fn doSomething() {
return (1, 2, 3);
};
let (x, y) = doSomething();
"#
);
// Should have exactly one error about tuple size mismatch
assert_eq!(errors.len(), 1);
// Check for the specific TupleSizeMismatch error
match &errors[0] {
crate::Error::TupleSizeMismatch(expected_size, actual_count, _) => {
assert_eq!(*expected_size, 3);
assert_eq!(*actual_count, 2);
}
e => panic!("Expected TupleSizeMismatch error, got: {:?}", e),
}
Ok(())
}
#[test]
fn test_tuple_return_called_by_non_tuple_return() -> anyhow::Result<()> {
let compiled = compile!(
debug
r#"
fn doSomething() {
return (1, 2);
};
fn doSomethingElse() {
let (x, y) = doSomething();
return y;
};
let returnedValue = doSomethingElse();
"#
);
assert_eq!(
compiled,
indoc! {
"
j main
doSomething:
move r15 sp
push ra
push 1
push 2
move r15 1
sub r0 sp 3
get ra db r0
j ra
doSomethingElse:
push ra
jal doSomething
pop r9
pop r8
move sp r15
move r15 r9
j __internal_L2
__internal_L2:
pop ra
j ra
main:
jal doSomethingElse
move r8 r15
"
}
);
Ok(())
}
#[test]
fn test_non_tuple_return_called_by_tuple_return() -> anyhow::Result<()> {
let compiled = compile!(
debug
r#"
fn getValue() {
return 42;
};
fn getTuple() {
let x = getValue();
return (x, x);
};
let (a, b) = getTuple();
"#
);
assert_eq!(
compiled,
indoc! {
"
j main
getValue:
push ra
move r15 42
j __internal_L1
__internal_L1:
pop ra
j ra
getTuple:
move r15 sp
push ra
jal getValue
move r8 r15
push r8
push r8
move r15 1
sub r0 sp 3
get ra db r0
j ra
main:
jal getTuple
pop r9
pop r8
move sp r15
"
}
);
Ok(())
}
#[test]
fn test_tuple_literal_size_mismatch() -> anyhow::Result<()> {
let errors = compile!(
result
r#"
let (x, y) = (1, 2, 3);
"#
);
// Should have exactly one error about tuple size mismatch
assert_eq!(errors.len(), 1);
assert!(matches!(
errors[0],
crate::Error::TupleSizeMismatch(_, _, _)
));
Ok(())
}
#[test]
fn test_multiple_tuple_returns_in_function() -> anyhow::Result<()> {
let compiled = compile!(
debug
r#"
fn getValue(x) {
if (x) {
return (1, 2);
} else {
return (3, 4);
}
};
let (a, b) = getValue(1);
"#
);
assert_eq!(
compiled,
indoc! {
"
j main
getValue:
pop r8
move r15 sp
push ra
beqz r8 __internal_L3
push 1
push 2
move r15 0
sub r0 sp 3
get ra db r0
j ra
sub sp sp 2
j __internal_L2
__internal_L3:
push 3
push 4
move r15 0
sub r0 sp 3
get ra db r0
j ra
sub sp sp 2
__internal_L2:
main:
push 1
jal getValue
pop r9
pop r8
move sp r15
"
},
);
Ok(())
}
#[test]
fn test_tuple_return_with_expression() -> anyhow::Result<()> {
let compiled = compile!(
debug
r#"
fn add(x, y) {
return (x, y);
};
let (a, b) = add(5, 10);
"#
);
assert_eq!(
compiled,
indoc! {
"
j main
add:
pop r8
pop r9
move r15 sp
push ra
push r9
push r8
move r15 1
sub r0 sp 3
get ra db r0
j ra
main:
push 5
push 10
jal add
pop r9
pop r8
move sp r15
"
}
);
Ok(())
}
#[test]
fn test_nested_function_tuple_calls() -> anyhow::Result<()> {
let compiled = compile!(
debug
r#"
fn inner() {
return (1, 2);
};
fn outer() {
let (x, y) = inner();
return (y, x);
};
let (a, b) = outer();
"#
);
assert_eq!(
compiled,
indoc! {
"
j main
inner:
move r15 sp
push ra
push 1
push 2
move r15 1
sub r0 sp 3
get ra db r0
j ra
outer:
move r15 sp
push ra
jal inner
pop r9
pop r8
move sp r15
push r9
push r8
move r15 1
sub r0 sp 3
get ra db r0
j ra
main:
jal outer
pop r9
pop r8
move sp r15
"
}
);
Ok(())
}
#[test]
fn test_tuple_literal_with_constant_expressions() -> anyhow::Result<()> {
let compiled = compile!(
debug
r#"
let (a, b) = (1 + 2, 3 * 4);
"#
);
assert_eq!(
compiled,
indoc! {
"
j main
main:
move r8 3
move r9 12
"
}
);
Ok(())
}
#[test]
fn test_tuple_literal_with_variable_expressions() -> anyhow::Result<()> {
let compiled = compile!(
debug
r#"
let x = 5;
let y = 10;
let (a, b) = (x + 1, y * 2);
"#
);
assert_eq!(
compiled,
indoc! {
"
j main
main:
move r8 5
move r9 10
add r1 r8 1
move r10 r1
mul r2 r9 2
move r11 r2
"
}
);
Ok(())
}
#[test]
fn test_tuple_assignment_with_expressions() -> anyhow::Result<()> {
let compiled = compile!(
debug
r#"
let a = 0;
let b = 0;
let x = 5;
(a, b) = (x + 1, x * 2);
"#
);
assert_eq!(
compiled,
indoc! {
"
j main
main:
move r8 0
move r9 0
move r10 5
add r1 r10 1
move r8 r1
mul r2 r10 2
move r9 r2
"
}
);
Ok(())
}
#[test]
fn test_tuple_literal_with_function_calls() -> anyhow::Result<()> {
let compiled = compile!(
debug
r#"
fn getValue() { return 42; };
fn getOther() { return 99; };
let (a, b) = (getValue(), getOther());
"#
);
assert_eq!(
compiled,
indoc! {
"
j main
getValue:
push ra
move r15 42
j __internal_L1
__internal_L1:
pop ra
j ra
getOther:
push ra
move r15 99
j __internal_L2
__internal_L2:
pop ra
j ra
main:
push r8
jal getValue
pop r8
move r1 r15
move r8 r1
push r8
push r9
jal getOther
pop r9
pop r8
move r2 r15
move r9 r2
"
}
);
Ok(())
}
#[test]
fn test_tuple_with_logical_expressions() -> anyhow::Result<()> {
let compiled = compile!(
debug
r#"
let x = 1;
let y = 0;
let (a, b) = (x && y, x || y);
"#
);
assert_eq!(
compiled,
indoc! {
"
j main
main:
move r8 1
move r9 0
and r1 r8 r9
move r10 r1
or r2 r8 r9
move r11 r2
"
}
);
Ok(())
}
#[test]
fn test_tuple_with_comparison_expressions() -> anyhow::Result<()> {
let compiled = compile!(
debug
r#"
let x = 5;
let y = 10;
let (a, b) = (x > y, x < y);
"#
);
assert_eq!(
compiled,
indoc! {
"
j main
main:
move r8 5
move r9 10
sgt r1 r8 r9
move r10 r1
slt r2 r8 r9
move r11 r2
"
}
);
Ok(())
}
#[test]
fn test_tuple_with_device_property_access() -> anyhow::Result<()> {
let compiled = compile!(
debug
r#"
device sensor = "d0";
device display = "d1";
let (temp, pressure) = (sensor.Temperature, sensor.Pressure);
"#
);
assert_eq!(
compiled,
indoc! {
"
j main
main:
l r1 d0 Temperature
move r8 r1
l r2 d0 Pressure
move r9 r2
"
}
);
Ok(())
}
#[test]
fn test_tuple_with_device_property_and_function_call() -> anyhow::Result<()> {
let compiled = compile!(
debug
r#"
device self = "db";
fn getY() {
return 42;
}
let (x, y) = (self.Setting, getY());
"#
);
assert_eq!(
compiled,
indoc! {
"
j main
getY:
push ra
move r15 42
j __internal_L1
__internal_L1:
pop ra
j ra
main:
l r1 db Setting
move r8 r1
push r8
push r9
jal getY
pop r9
pop r8
move r2 r15
move r9 r2
"
}
);
Ok(())
}
#[test]
fn test_tuple_with_function_call_expressions() -> anyhow::Result<()> {
let compiled = compile!(
debug
r#"
fn getValue() { return 10; }
fn getOther() { return 20; }
let (a, b) = (getValue() + 5, getOther() * 2);
"#
);
assert_eq!(
compiled,
indoc! {
"
j main
getValue:
push ra
move r15 10
j __internal_L1
__internal_L1:
pop ra
j ra
getOther:
push ra
move r15 20
j __internal_L2
__internal_L2:
pop ra
j ra
main:
push r8
jal getValue
pop r8
move r1 r15
add r2 r1 5
move r8 r2
push r8
push r9
jal getOther
pop r9
pop r8
move r3 r15
mul r4 r3 2
move r9 r4
"
}
);
Ok(())
}
}

View File

@@ -9,7 +9,8 @@ use parser::{
AssignmentExpression, BinaryExpression, BlockExpression, ConstDeclarationExpression, AssignmentExpression, BinaryExpression, BlockExpression, ConstDeclarationExpression,
DeviceDeclarationExpression, Expression, FunctionExpression, IfExpression, DeviceDeclarationExpression, Expression, FunctionExpression, IfExpression,
InvocationExpression, Literal, LiteralOr, LiteralOrVariable, LogicalExpression, InvocationExpression, Literal, LiteralOr, LiteralOrVariable, LogicalExpression,
LoopExpression, MemberAccessExpression, Spanned, TernaryExpression, WhileExpression, LoopExpression, MemberAccessExpression, Spanned, TernaryExpression,
TupleAssignmentExpression, TupleDeclarationExpression, WhileExpression,
}, },
}; };
use rust_decimal::Decimal; use rust_decimal::Decimal;
@@ -63,6 +64,9 @@ pub enum Error<'a> {
#[error("Attempted to re-assign a value to a device const `{0}`")] #[error("Attempted to re-assign a value to a device const `{0}`")]
DeviceAssignment(Cow<'a, str>, Span), DeviceAssignment(Cow<'a, str>, Span),
#[error("Expected a {0}-tuple, but you're trying to destructure into {1} variables")]
TupleSizeMismatch(usize, usize, Span),
#[error("{0}")] #[error("{0}")]
Unknown(String, Option<Span>), Unknown(String, Option<Span>),
} }
@@ -84,7 +88,8 @@ impl<'a> From<Error<'a>> for lsp_types::Diagnostic {
| InvalidDevice(_, span) | InvalidDevice(_, span)
| ConstAssignment(_, span) | ConstAssignment(_, span)
| DeviceAssignment(_, span) | DeviceAssignment(_, span)
| AgrumentMismatch(_, span) => Diagnostic { | AgrumentMismatch(_, span)
| TupleSizeMismatch(_, _, span) => Diagnostic {
range: span.into(), range: span.into(),
message: value.to_string(), message: value.to_string(),
severity: Some(DiagnosticSeverity::ERROR), severity: Some(DiagnosticSeverity::ERROR),
@@ -142,6 +147,8 @@ pub struct Compiler<'a> {
pub parser: ASTParser<'a>, pub parser: ASTParser<'a>,
function_locations: HashMap<Cow<'a, str>, usize>, function_locations: HashMap<Cow<'a, str>, usize>,
function_metadata: HashMap<Cow<'a, str>, Vec<Cow<'a, str>>>, function_metadata: HashMap<Cow<'a, str>, Vec<Cow<'a, str>>>,
function_tuple_return_sizes: HashMap<Cow<'a, str>, usize>, // Track tuple return sizes
current_function_name: Option<Cow<'a, str>>, // Track the function currently being compiled
devices: HashMap<Cow<'a, str>, Cow<'a, str>>, devices: HashMap<Cow<'a, str>, Cow<'a, str>>,
// This holds the IL code which will be used in the // This holds the IL code which will be used in the
@@ -155,6 +162,8 @@ pub struct Compiler<'a> {
label_counter: usize, label_counter: usize,
loop_stack: Vec<(Cow<'a, str>, Cow<'a, str>)>, // Stores (start_label, end_label) loop_stack: Vec<(Cow<'a, str>, Cow<'a, str>)>, // Stores (start_label, end_label)
current_return_label: Option<Cow<'a, str>>, current_return_label: Option<Cow<'a, str>>,
current_return_is_tuple: bool, // Track if the current function returns a tuple
current_function_sp_saved: bool, // Track if we've emitted the SP save for the current function
/// stores (IC10 `line_num`, `Vec<Span>`) /// stores (IC10 `line_num`, `Vec<Span>`)
pub source_map: HashMap<usize, Vec<Span>>, pub source_map: HashMap<usize, Vec<Span>>,
/// Accumulative errors from the compilation process /// Accumulative errors from the compilation process
@@ -176,6 +185,10 @@ impl<'a> Compiler<'a> {
label_counter: 0, label_counter: 0,
loop_stack: Vec::new(), loop_stack: Vec::new(),
current_return_label: None, current_return_label: None,
current_return_is_tuple: false,
current_function_sp_saved: false,
current_function_name: None,
function_tuple_return_sizes: HashMap::new(),
source_map: HashMap::new(), source_map: HashMap::new(),
errors: Vec::new(), errors: Vec::new(),
} }
@@ -465,6 +478,14 @@ impl<'a> Compiler<'a> {
temp_name: Some(result_name), temp_name: Some(result_name),
})) }))
} }
Expression::TupleDeclaration(tuple_decl) => {
self.expression_tuple_declaration(tuple_decl.node, scope)?;
Ok(None)
}
Expression::TupleAssignment(tuple_assign) => {
self.expression_tuple_assignment(tuple_assign.node, scope)?;
Ok(None)
}
_ => Err(Error::Unknown( _ => Err(Error::Unknown(
format!( format!(
"Expression type not yet supported in general expression context: {:?}", "Expression type not yet supported in general expression context: {:?}",
@@ -932,6 +953,504 @@ impl<'a> Compiler<'a> {
Ok(()) Ok(())
} }
fn expression_function_invocation_with_invocation(
&mut self,
invoke_expr: &InvocationExpression<'a>,
parent_scope: &mut VariableScope<'a, '_>,
backup_registers: bool,
) -> Result<(), Error<'a>> {
let InvocationExpression { name, arguments } = invoke_expr;
if !self.function_locations.contains_key(name.node.as_ref()) {
self.errors
.push(Error::UnknownIdentifier(name.node.clone(), name.span));
return Ok(());
}
let Some(args) = self.function_metadata.get(name.node.as_ref()) else {
return Err(Error::UnknownIdentifier(name.node.clone(), name.span));
};
if args.len() != arguments.len() {
self.errors
.push(Error::AgrumentMismatch(name.node.clone(), name.span));
return Ok(());
}
let mut stack = VariableScope::scoped(parent_scope);
// Get the list of active registers (may or may not backup)
let active_registers = stack.registers();
// backup all used registers to the stack (unless this is for tuple return handling)
if backup_registers {
for register in &active_registers {
stack.add_variable(
Cow::from(format!("temp_{register}")),
LocationRequest::Stack,
None,
)?;
self.write_instruction(
Instruction::Push(Operand::Register(*register)),
Some(name.span),
)?;
}
}
for arg in arguments {
match &arg.node {
Expression::Literal(spanned_lit) => match &spanned_lit.node {
Literal::Number(num) => {
self.write_instruction(
Instruction::Push(Operand::Number((*num).into())),
Some(spanned_lit.span),
)?;
}
Literal::Boolean(b) => {
self.write_instruction(
Instruction::Push(Operand::Number(Number::from(*b).into())),
Some(spanned_lit.span),
)?;
}
_ => {}
},
Expression::Variable(var_name) => {
let loc = match stack.get_location_of(&var_name.node, Some(var_name.span)) {
Ok(l) => l,
Err(_) => {
self.errors.push(Error::UnknownIdentifier(
var_name.node.clone(),
var_name.span,
));
VariableLocation::Temporary(0)
}
};
match loc {
VariableLocation::Persistant(reg) | VariableLocation::Temporary(reg) => {
self.write_instruction(
Instruction::Push(Operand::Register(reg)),
Some(var_name.span),
)?;
}
VariableLocation::Constant(lit) => {
self.write_instruction(
Instruction::Push(extract_literal(lit, false)?),
Some(var_name.span),
)?;
}
VariableLocation::Stack(stack_offset) => {
self.write_instruction(
Instruction::Sub(
Operand::Register(VariableScope::TEMP_STACK_REGISTER),
Operand::StackPointer,
Operand::Number(stack_offset.into()),
),
Some(var_name.span),
)?;
self.write_instruction(
Instruction::Get(
Operand::Register(VariableScope::TEMP_STACK_REGISTER),
Operand::Device(Cow::from("db")),
Operand::Register(VariableScope::TEMP_STACK_REGISTER),
),
Some(var_name.span),
)?;
self.write_instruction(
Instruction::Push(Operand::Register(
VariableScope::TEMP_STACK_REGISTER,
)),
Some(var_name.span),
)?;
}
VariableLocation::Device(_) => {
self.errors.push(Error::Unknown(
"Device references not supported in function arguments".into(),
Some(var_name.span),
));
}
}
}
_ => {
self.errors.push(Error::Unknown(
"Only literals and variables supported in function arguments".into(),
Some(arg.span),
));
}
}
}
let Some(_location) = self.function_locations.get(&name.node) else {
self.errors
.push(Error::UnknownIdentifier(name.node.clone(), name.span));
return Ok(());
};
self.write_instruction(
Instruction::JumpAndLink(Operand::Label(name.node.clone())),
Some(name.span),
)?;
// pop all registers back (if they were backed up)
if backup_registers {
for register in active_registers.iter().rev() {
self.write_instruction(
Instruction::Pop(Operand::Register(*register)),
Some(name.span),
)?;
}
}
Ok(())
}
fn expression_tuple_declaration(
&mut self,
tuple_decl: TupleDeclarationExpression<'a>,
scope: &mut VariableScope<'a, '_>,
) -> Result<(), Error<'a>> {
let TupleDeclarationExpression { names, value } = tuple_decl;
// Compile the right-hand side expression
// For function calls returning tuples:
// r15 = pointer to beginning of tuple on stack
// r14, r13, ... contain the tuple elements, or they're on the stack
match value.node {
Expression::Invocation(invoke_expr) => {
// Execute the function call
// Tuple values are on the stack, sp points after the last pushed value
// Pop them in reverse order (from end to beginning)
// We don't need to backup registers for tuple returns
self.expression_function_invocation_with_invocation(&invoke_expr, scope, false)?;
// Validate tuple return size matches the declaration
let func_name = &invoke_expr.node.name.node;
if let Some(&expected_size) = self.function_tuple_return_sizes.get(func_name) {
if names.len() != expected_size {
self.errors.push(Error::TupleSizeMismatch(
expected_size,
names.len(),
value.span,
));
}
}
// First pass: allocate variables in order
let mut var_locations = Vec::new();
for name_spanned in names.iter() {
// Skip underscores
if name_spanned.node.as_ref() == "_" {
var_locations.push(None);
continue;
}
// Add variable to scope
let var_location = scope.add_variable(
name_spanned.node.clone(),
LocationRequest::Persist,
Some(name_spanned.span),
)?;
var_locations.push(Some(var_location));
}
// Second pass: pop in reverse order through the list (since stack is LIFO)
// var_locations[0] is the first element (bottom of stack)
// var_locations[n-1] is the last element (top of stack)
// We pop from the top, so we iterate in reverse through var_locations
for (idx, var_loc_opt) in var_locations.iter().enumerate().rev() {
match var_loc_opt {
Some(var_location) => {
let var_reg = self.resolve_register(&var_location)?;
// Pop from stack into the variable's register
self.write_instruction(
Instruction::Pop(Operand::Register(var_reg)),
Some(names[idx].span),
)?;
}
None => {
// Underscore: pop into temp register to discard
self.write_instruction(
Instruction::Pop(Operand::Register(
VariableScope::TEMP_STACK_REGISTER,
)),
Some(names[idx].span),
)?;
}
}
}
// Restore stack pointer to value saved at function entry
self.write_instruction(
Instruction::Move(
Operand::StackPointer,
Operand::Register(VariableScope::RETURN_REGISTER),
),
Some(value.span),
)?;
}
Expression::Tuple(tuple_expr) => {
// Direct tuple literal: (value1, value2, ...)
let tuple_elements = tuple_expr.node;
// Validate tuple size matches names
if tuple_elements.len() != names.len() {
return Err(Error::TupleSizeMismatch(
names.len(),
tuple_elements.len(),
value.span,
));
}
// Compile each element and assign to corresponding variable
for (name_spanned, element) in names.into_iter().zip(tuple_elements.into_iter()) {
// Skip underscores
if name_spanned.node.as_ref() == "_" {
continue;
}
// Add variable to scope
let var_location = scope.add_variable(
name_spanned.node.clone(),
LocationRequest::Persist,
Some(name_spanned.span),
)?;
// Compile the element expression - use compile_operand to handle all expression types
let (value_operand, cleanup) = self.compile_operand(element, scope)?;
self.emit_variable_assignment(&var_location, value_operand)?;
// Clean up any temporary registers used for complex expressions
if let Some(temp_name) = cleanup {
scope.free_temp(temp_name, None)?;
}
}
}
_ => {
return Err(Error::Unknown(
"Tuple declaration only supports function invocations or tuple literals as RHS"
.into(),
Some(value.span),
));
}
}
Ok(())
}
fn expression_tuple_assignment(
&mut self,
tuple_assign: TupleAssignmentExpression<'a>,
scope: &mut VariableScope<'a, '_>,
) -> Result<(), Error<'a>> {
let TupleAssignmentExpression { names, value } = tuple_assign;
// Similar to tuple declaration, but variables must already exist
match value.node {
Expression::Invocation(invoke_expr) => {
// Execute the function call
// Tuple values are on the stack, sp points after the last pushed value
// Pop them in reverse order (from end to beginning)
// We don't need to backup registers for tuple returns
self.expression_function_invocation_with_invocation(&invoke_expr, scope, false)?;
// Validate tuple return size matches the assignment
let func_name = &invoke_expr.node.name.node;
if let Some(&expected_size) = self.function_tuple_return_sizes.get(func_name) {
if names.len() != expected_size {
self.errors.push(Error::TupleSizeMismatch(
expected_size,
names.len(),
value.span,
));
}
}
// First pass: look up variable locations
let mut var_locs = Vec::new();
for name_spanned in names.iter() {
// Skip underscores
if name_spanned.node.as_ref() == "_" {
var_locs.push(None);
continue;
}
// Get the existing variable location
let var_location =
match scope.get_location_of(&name_spanned.node, Some(name_spanned.span)) {
Ok(l) => l,
Err(_) => {
self.errors.push(Error::UnknownIdentifier(
name_spanned.node.clone(),
name_spanned.span,
));
VariableLocation::Temporary(0)
}
};
var_locs.push(Some(var_location));
}
// Second pass: pop in reverse order and assign
for (idx, var_loc_opt) in var_locs.iter().enumerate().rev() {
if let Some(var_location) = var_loc_opt {
// Pop from stack and assign to variable
match var_location {
VariableLocation::Temporary(reg)
| VariableLocation::Persistant(reg) => {
// Pop directly into the variable's register
self.write_instruction(
Instruction::Pop(Operand::Register(*reg)),
Some(names[idx].span),
)?;
}
VariableLocation::Stack(offset) => {
// Pop into temp register, then write to variable stack
self.write_instruction(
Instruction::Pop(Operand::Register(
VariableScope::TEMP_STACK_REGISTER,
)),
Some(names[idx].span),
)?;
// Write to variable stack location
self.write_instruction(
Instruction::Sub(
Operand::Register(0),
Operand::StackPointer,
Operand::Number((*offset).into()),
),
Some(names[idx].span),
)?;
self.write_instruction(
Instruction::Put(
Operand::Device(Cow::from("db")),
Operand::Register(0),
Operand::Register(VariableScope::TEMP_STACK_REGISTER),
),
Some(names[idx].span),
)?;
}
VariableLocation::Constant(_) => {
return Err(Error::ConstAssignment(
names[idx].node.clone(),
names[idx].span,
));
}
VariableLocation::Device(_) => {
return Err(Error::DeviceAssignment(
names[idx].node.clone(),
names[idx].span,
));
}
}
}
}
// Restore stack pointer to value saved at function entry
self.write_instruction(
Instruction::Move(
Operand::StackPointer,
Operand::Register(VariableScope::RETURN_REGISTER),
),
Some(value.span),
)?;
}
Expression::Tuple(tuple_expr) => {
// Direct tuple literal: (value1, value2, ...)
let tuple_elements = tuple_expr.node;
// Validate tuple size matches names
if tuple_elements.len() != names.len() {
return Err(Error::TupleSizeMismatch(
tuple_elements.len(),
names.len(),
value.span,
));
}
// Compile each element and assign to corresponding variable
for (name_spanned, element) in names.into_iter().zip(tuple_elements.into_iter()) {
// Skip underscores
if name_spanned.node.as_ref() == "_" {
continue;
}
// Get the existing variable location
let var_location =
match scope.get_location_of(&name_spanned.node, Some(name_spanned.span)) {
Ok(l) => l,
Err(_) => {
self.errors.push(Error::UnknownIdentifier(
name_spanned.node.clone(),
name_spanned.span,
));
VariableLocation::Temporary(0)
}
};
// Compile the element expression - use compile_operand to handle all expression types
let (value_operand, cleanup) = self.compile_operand(element, scope)?;
// Assign the compiled value to the target variable location
match &var_location {
VariableLocation::Temporary(reg) | VariableLocation::Persistant(reg) => {
self.write_instruction(
Instruction::Move(Operand::Register(*reg), value_operand),
Some(name_spanned.span),
)?;
}
VariableLocation::Stack(offset) => {
self.write_instruction(
Instruction::Sub(
Operand::Register(VariableScope::TEMP_STACK_REGISTER),
Operand::StackPointer,
Operand::Number((*offset).into()),
),
Some(name_spanned.span),
)?;
self.write_instruction(
Instruction::Put(
Operand::Device(Cow::from("db")),
Operand::Register(VariableScope::TEMP_STACK_REGISTER),
value_operand,
),
Some(name_spanned.span),
)?;
}
VariableLocation::Constant(_) => {
return Err(Error::ConstAssignment(
name_spanned.node.clone(),
name_spanned.span,
));
}
VariableLocation::Device(_) => {
return Err(Error::DeviceAssignment(
name_spanned.node.clone(),
name_spanned.span,
));
}
}
// Clean up any temporary registers used for complex expressions
if let Some(temp_name) = cleanup {
scope.free_temp(temp_name, None)?;
}
}
}
_ => {
return Err(Error::Unknown(
"Tuple assignment only supports function invocations or tuple literals as RHS"
.into(),
Some(value.span),
));
}
}
Ok(())
}
fn expression_function_invocation( fn expression_function_invocation(
&mut self, &mut self,
invoke_expr: Spanned<InvocationExpression<'a>>, invoke_expr: Spanned<InvocationExpression<'a>>,
@@ -1946,6 +2465,169 @@ impl<'a> Compiler<'a> {
} }
} }
} }
Expression::Tuple(tuple_expr) => {
let span = expr.span;
let tuple_elements = &tuple_expr.node;
// Record the stack offset where the tuple will start
let tuple_start_offset = scope.stack_offset();
// First pass: Add temporary variables to scope for each tuple element
// This updates the scope's stack_offset so we can calculate ra position later
let mut temp_names = Vec::new();
for (i, _element) in tuple_elements.iter().enumerate() {
let temp_name = format!("__tuple_ret_{}", i);
scope.add_variable(
temp_name.clone().into(),
LocationRequest::Stack,
Some(span),
)?;
temp_names.push(temp_name);
}
// Second pass: Push the actual values onto the stack
for element in tuple_elements.iter() {
match &element.node {
Expression::Literal(lit) => {
let value_operand = extract_literal(lit.node.clone(), false)?;
self.write_instruction(
Instruction::Push(value_operand),
Some(span),
)?;
}
Expression::Variable(var) => {
let var_loc = match scope.get_location_of(&var.node, Some(var.span))
{
Ok(l) => l,
Err(_) => {
self.errors.push(Error::UnknownIdentifier(
var.node.clone(),
var.span,
));
VariableLocation::Temporary(0)
}
};
match &var_loc {
VariableLocation::Temporary(reg)
| VariableLocation::Persistant(reg) => {
self.write_instruction(
Instruction::Push(Operand::Register(*reg)),
Some(span),
)?;
}
VariableLocation::Constant(lit) => {
let value_operand = extract_literal(lit.clone(), false)?;
self.write_instruction(
Instruction::Push(value_operand),
Some(span),
)?;
}
VariableLocation::Stack(offset) => {
self.write_instruction(
Instruction::Sub(
Operand::Register(
VariableScope::TEMP_STACK_REGISTER,
),
Operand::StackPointer,
Operand::Number((*offset).into()),
),
Some(span),
)?;
self.write_instruction(
Instruction::Get(
Operand::Register(
VariableScope::TEMP_STACK_REGISTER,
),
Operand::Device(Cow::from("db")),
Operand::Register(
VariableScope::TEMP_STACK_REGISTER,
),
),
Some(span),
)?;
self.write_instruction(
Instruction::Push(Operand::Register(
VariableScope::TEMP_STACK_REGISTER,
)),
Some(span),
)?;
}
VariableLocation::Device(_) => {
return Err(Error::Unknown(
"You can not return a device from a function.".into(),
Some(var.span),
));
}
}
}
_ => {
// For complex expressions, just push 0 for now
self.write_instruction(
Instruction::Push(Operand::Number(
Number::Integer(0, Unit::None).into(),
)),
Some(span),
)?;
}
}
}
// Store the pointer to the tuple (stack offset) in r15
self.write_instruction(
Instruction::Move(
Operand::Register(VariableScope::RETURN_REGISTER),
Operand::Number(tuple_start_offset.into()),
),
Some(span),
)?;
// For tuple returns, ra is buried under the tuple values on the stack.
// Stack layout: [ra, val0, val1, val2, ...]
// Instead of popping and pushing, use Get to read ra from its stack position
// while leaving the tuple values in place.
// Calculate offset to ra from current stack position
// ra is at tuple_start_offset - 1, so offset = (current - tuple_start) + 1
let current_offset = scope.stack_offset();
let ra_offset_from_current = (current_offset - tuple_start_offset + 1) as i32;
// Use a temp register to read ra from the stack
if ra_offset_from_current > 0 {
self.write_instruction(
Instruction::Sub(
Operand::Register(VariableScope::TEMP_STACK_REGISTER),
Operand::StackPointer,
Operand::Number(ra_offset_from_current.into()),
),
Some(span),
)?;
self.write_instruction(
Instruction::Get(
Operand::ReturnAddress,
Operand::Device(Cow::from("db")),
Operand::Register(VariableScope::TEMP_STACK_REGISTER),
),
Some(span),
)?;
}
// Jump back to caller
self.write_instruction(Instruction::Jump(Operand::ReturnAddress), Some(span))?;
// Mark that we had a tuple return so the function declaration can skip return label cleanup
self.current_return_is_tuple = true;
// Record the tuple return size for validation at call sites
if let Some(func_name) = &self.current_function_name {
self.function_tuple_return_sizes
.insert(func_name.clone(), tuple_elements.len());
}
// Early return to skip the normal return label processing
return Ok(VariableLocation::Persistant(VariableScope::RETURN_REGISTER));
}
_ => { _ => {
return Err(Error::Unknown( return Err(Error::Unknown(
format!("Unsupported `return` statement: {:?}", expr), format!("Unsupported `return` statement: {:?}", expr),
@@ -2574,6 +3256,78 @@ impl<'a> Compiler<'a> {
} }
} }
/// Check if a function body contains any tuple returns
fn has_tuple_return(body: &BlockExpression) -> bool {
for expr in &body.0 {
match &expr.node {
Expression::Return(Some(ret_expr)) => {
if let Expression::Tuple(_) = &ret_expr.node {
return true;
}
}
Expression::If(if_expr) => {
// Check the then block
if Self::has_tuple_return(&if_expr.node.body.node) {
return true;
}
// Check the else branch if it exists
if let Some(else_branch) = &if_expr.node.else_branch {
match &else_branch.node {
Expression::Block(block) => {
if Self::has_tuple_return(block) {
return true;
}
}
Expression::If(_) => {
// Handle else-if chains
if Self::has_tuple_return_in_expr(else_branch) {
return true;
}
}
_ => {}
}
}
}
Expression::While(while_expr) => {
if Self::has_tuple_return(&while_expr.node.body) {
return true;
}
}
Expression::Loop(loop_expr) => {
if Self::has_tuple_return(&loop_expr.node.body.node) {
return true;
}
}
Expression::Block(block) => {
if Self::has_tuple_return(block) {
return true;
}
}
_ => {}
}
}
false
}
/// Helper to check for tuple returns in any expression
fn has_tuple_return_in_expr(expr: &Spanned<Expression>) -> bool {
match &expr.node {
Expression::Block(block) => Self::has_tuple_return(block),
Expression::If(if_expr) => {
if Self::has_tuple_return(&if_expr.node.body.node) {
return true;
}
if let Some(else_branch) = &if_expr.node.else_branch {
return Self::has_tuple_return_in_expr(else_branch);
}
false
}
Expression::While(while_expr) => Self::has_tuple_return(&while_expr.node.body),
Expression::Loop(loop_expr) => Self::has_tuple_return(&loop_expr.node.body.node),
_ => false,
}
}
/// Compile a function declaration. /// Compile a function declaration.
/// Calees are responsible for backing up any registers they wish to use. /// Calees are responsible for backing up any registers they wish to use.
fn expression_function( fn expression_function(
@@ -2601,6 +3355,9 @@ impl<'a> Compiler<'a> {
arguments.iter().map(|a| a.node.clone()).collect(), arguments.iter().map(|a| a.node.clone()).collect(),
); );
// Set the current function being compiled
self.current_function_name = Some(name.node.clone());
// Declare the function as a line identifier // Declare the function as a line identifier
self.write_instruction(Instruction::LabelDef(name.node.clone()), Some(span))?; self.write_instruction(Instruction::LabelDef(name.node.clone()), Some(span))?;
@@ -2662,6 +3419,18 @@ impl<'a> Compiler<'a> {
)?; )?;
} }
// If this function has tuple returns, save the SP to r15 before pushing ra
if Self::has_tuple_return(&body) {
self.write_instruction(
Instruction::Move(
Operand::Register(VariableScope::RETURN_REGISTER),
Operand::StackPointer,
),
Some(span),
)?;
self.current_function_sp_saved = true;
}
self.write_instruction(Instruction::Push(Operand::ReturnAddress), Some(span))?; self.write_instruction(Instruction::Push(Operand::ReturnAddress), Some(span))?;
let return_label = self.next_label_name(); let return_label = self.next_label_name();
@@ -2715,54 +3484,63 @@ impl<'a> Compiler<'a> {
self.current_return_label = prev_return_label; self.current_return_label = prev_return_label;
self.write_instruction(Instruction::LabelDef(return_label.clone()), Some(span))?; // Only write the return label if this function doesn't have a tuple return
// (tuple returns handle their own pop ra and return)
if !self.current_return_is_tuple {
self.write_instruction(Instruction::LabelDef(return_label.clone()), Some(span))?;
if ra_stack_offset == 1 { if ra_stack_offset == 1 {
self.write_instruction(Instruction::Pop(Operand::ReturnAddress), Some(span))?; self.write_instruction(Instruction::Pop(Operand::ReturnAddress), Some(span))?;
let remaining_cleanup = block_scope.stack_offset() - 1; let remaining_cleanup = block_scope.stack_offset() - 1;
if remaining_cleanup > 0 { if remaining_cleanup > 0 {
self.write_instruction(
Instruction::Sub(
Operand::StackPointer,
Operand::StackPointer,
Operand::Number(remaining_cleanup.into()),
),
Some(span),
)?;
}
} else {
self.write_instruction( self.write_instruction(
Instruction::Sub( Instruction::Sub(
Operand::Register(VariableScope::TEMP_STACK_REGISTER),
Operand::StackPointer, Operand::StackPointer,
Operand::StackPointer, Operand::Number(ra_stack_offset.into()),
Operand::Number(remaining_cleanup.into()),
), ),
Some(span), Some(span),
)?; )?;
}
} else {
self.write_instruction(
Instruction::Sub(
Operand::Register(VariableScope::TEMP_STACK_REGISTER),
Operand::StackPointer,
Operand::Number(ra_stack_offset.into()),
),
Some(span),
)?;
self.write_instruction(
Instruction::Get(
Operand::ReturnAddress,
Operand::Device(Cow::from("db")),
Operand::Register(VariableScope::TEMP_STACK_REGISTER),
),
Some(span),
)?;
if block_scope.stack_offset() > 0 {
self.write_instruction( self.write_instruction(
Instruction::Sub( Instruction::Get(
Operand::StackPointer, Operand::ReturnAddress,
Operand::StackPointer, Operand::Device(Cow::from("db")),
Operand::Number(block_scope.stack_offset().into()), Operand::Register(VariableScope::TEMP_STACK_REGISTER),
), ),
Some(span), Some(span),
)?; )?;
if block_scope.stack_offset() > 0 {
self.write_instruction(
Instruction::Sub(
Operand::StackPointer,
Operand::StackPointer,
Operand::Number(block_scope.stack_offset().into()),
),
Some(span),
)?;
}
} }
self.write_instruction(Instruction::Jump(Operand::ReturnAddress), Some(span))?;
} }
self.write_instruction(Instruction::Jump(Operand::ReturnAddress), Some(span))?; // Reset the flag for the next function
self.current_return_is_tuple = false;
self.current_function_sp_saved = false;
self.current_function_name = None;
Ok(()) Ok(())
} }
} }

View File

@@ -441,7 +441,13 @@ impl<'a> Parser<'a> {
)); ));
} }
TokenType::Keyword(Keyword::Let) => Some(self.spanned(|p| p.declaration())?), TokenType::Keyword(Keyword::Let) => {
if self_matches_peek!(self, TokenType::Symbol(Symbol::LParen)) {
Some(self.spanned(|p| p.tuple_declaration())?)
} else {
Some(self.spanned(|p| p.declaration())?)
}
}
TokenType::Keyword(Keyword::Device) => { TokenType::Keyword(Keyword::Device) => {
let spanned_dev = self.spanned(|p| p.device())?; let spanned_dev = self.spanned(|p| p.device())?;
@@ -561,9 +567,7 @@ impl<'a> Parser<'a> {
}) })
} }
TokenType::Symbol(Symbol::LParen) => { TokenType::Symbol(Symbol::LParen) => self.parenthesized_or_tuple()?,
self.spanned(|p| p.priority())?.node.map(|node| *node)
}
TokenType::Symbol(Symbol::Minus) => { TokenType::Symbol(Symbol::Minus) => {
let start_span = self.current_span(); let start_span = self.current_span();
@@ -642,8 +646,8 @@ impl<'a> Parser<'a> {
} }
} }
TokenType::Symbol(Symbol::LParen) => *self TokenType::Symbol(Symbol::LParen) => *self
.spanned(|p| p.priority())? .parenthesized_or_tuple()?
.node .map(Box::new)
.ok_or(Error::UnexpectedEOF)?, .ok_or(Error::UnexpectedEOF)?,
TokenType::Identifier(ref id) if SysCall::is_syscall(id) => { TokenType::Identifier(ref id) if SysCall::is_syscall(id) => {
@@ -774,7 +778,8 @@ impl<'a> Parser<'a> {
| Expression::Ternary(_) | Expression::Ternary(_)
| Expression::Negation(_) | Expression::Negation(_)
| Expression::MemberAccess(_) | Expression::MemberAccess(_)
| Expression::MethodCall(_) => {} | Expression::MethodCall(_)
| Expression::Tuple(_) => {}
_ => { _ => {
return Err(Error::InvalidSyntax( return Err(Error::InvalidSyntax(
self.current_span(), self.current_span(),
@@ -1081,19 +1086,39 @@ impl<'a> Parser<'a> {
end_col: right.span.end_col, end_col: right.span.end_col,
}; };
expressions.insert( // Check if the left side is a tuple, and if so, create a TupleAssignment
i, let node = if let Expression::Tuple(tuple_expr) = &left.node {
Spanned { // Extract variable names from the tuple, handling underscores
let mut names = Vec::new();
for item in &tuple_expr.node {
if let Expression::Variable(var) = &item.node {
names.push(var.clone());
} else {
return Err(Error::InvalidSyntax(
item.span,
String::from("Tuple assignment can only contain variable names"),
));
}
}
Expression::TupleAssignment(Spanned {
span, span,
node: Expression::Assignment(Spanned { node: TupleAssignmentExpression {
span, names,
node: AssignmentExpression { value: boxed!(right),
assignee: boxed!(left), },
expression: boxed!(right), })
}, } else {
}), Expression::Assignment(Spanned {
}, span,
); node: AssignmentExpression {
assignee: boxed!(left),
expression: boxed!(right),
},
})
};
expressions.insert(i, Spanned { span, node });
} }
} }
operators.retain(|symbol| !matches!(symbol, Symbol::Assign)); operators.retain(|symbol| !matches!(symbol, Symbol::Assign));
@@ -1117,8 +1142,12 @@ impl<'a> Parser<'a> {
expressions.pop().ok_or(Error::UnexpectedEOF) expressions.pop().ok_or(Error::UnexpectedEOF)
} }
fn priority(&mut self) -> Result<Option<Box<Spanned<Expression<'a>>>>, Error<'a>> { fn parenthesized_or_tuple(
&mut self,
) -> Result<Option<Spanned<tree_node::Expression<'a>>>, Error<'a>> {
let start_span = self.current_span();
let current_token = self.current_token.as_ref().ok_or(Error::UnexpectedEOF)?; let current_token = self.current_token.as_ref().ok_or(Error::UnexpectedEOF)?;
if !token_matches!(current_token, TokenType::Symbol(Symbol::LParen)) { if !token_matches!(current_token, TokenType::Symbol(Symbol::LParen)) {
return Err(Error::UnexpectedToken( return Err(Error::UnexpectedToken(
self.current_span(), self.current_span(),
@@ -1127,17 +1156,112 @@ impl<'a> Parser<'a> {
} }
self.assign_next()?; self.assign_next()?;
let expression = self.expression()?.ok_or(Error::UnexpectedEOF)?;
let current_token = self.get_next()?.ok_or(Error::UnexpectedEOF)?; // Handle empty tuple '()'
if !token_matches!(current_token, TokenType::Symbol(Symbol::RParen)) { if self_matches_peek!(self, TokenType::Symbol(Symbol::RParen)) {
return Err(Error::UnexpectedToken( self.assign_next()?;
Self::token_to_span(&current_token), let end_span = self.current_span();
current_token, let span = Span {
)); start_line: start_span.start_line,
start_col: start_span.start_col,
end_line: end_span.end_line,
end_col: end_span.end_col,
};
return Ok(Some(Spanned {
span,
node: Expression::Tuple(Spanned { span, node: vec![] }),
}));
} }
Ok(Some(boxed!(expression))) let first_expression = self.expression()?.ok_or(Error::UnexpectedEOF)?;
if self_matches_peek!(self, TokenType::Symbol(Symbol::Comma)) {
// It is a tuple
let mut items = vec![first_expression];
while self_matches_peek!(self, TokenType::Symbol(Symbol::Comma)) {
// Next toekn is a comma, we need to consume it and advance 1 more time.
self.assign_next()?;
self.assign_next()?;
items.push(self.expression()?.ok_or(Error::UnexpectedEOF)?);
}
let next = self.get_next()?.ok_or(Error::UnexpectedEOF)?;
if !token_matches!(next, TokenType::Symbol(Symbol::RParen)) {
return Err(Error::UnexpectedToken(Self::token_to_span(&next), next));
}
let end_span = Self::token_to_span(&next);
let span = Span {
start_line: start_span.start_line,
start_col: start_span.start_col,
end_line: end_span.end_line,
end_col: end_span.end_col,
};
Ok(Some(Spanned {
span,
node: Expression::Tuple(Spanned { span, node: items }),
}))
} else {
// It is just priority
let next = self.get_next()?.ok_or(Error::UnexpectedEOF)?;
if !token_matches!(next, TokenType::Symbol(Symbol::RParen)) {
return Err(Error::UnexpectedToken(Self::token_to_span(&next), next));
}
Ok(Some(Spanned {
span: first_expression.span,
node: Expression::Priority(boxed!(first_expression)),
}))
}
}
fn tuple_declaration(&mut self) -> Result<Expression<'a>, Error<'a>> {
// 'let' is consumed before this call
// expect '('
let next = self.get_next()?.ok_or(Error::UnexpectedEOF)?;
if !token_matches!(next, TokenType::Symbol(Symbol::LParen)) {
return Err(Error::UnexpectedToken(Self::token_to_span(&next), next));
}
let mut names = Vec::new();
while !self_matches_peek!(self, TokenType::Symbol(Symbol::RParen)) {
let token = self.get_next()?.ok_or(Error::UnexpectedEOF)?;
let span = Self::token_to_span(&token);
if let TokenType::Identifier(id) = token.token_type {
names.push(Spanned { span, node: id });
} else {
return Err(Error::UnexpectedToken(span, token));
}
if self_matches_peek!(self, TokenType::Symbol(Symbol::Comma)) {
self.assign_next()?;
}
}
self.assign_next()?; // consume ')'
let assign = self.get_next()?.ok_or(Error::UnexpectedEOF)?;
if !token_matches!(assign, TokenType::Symbol(Symbol::Assign)) {
return Err(Error::UnexpectedToken(Self::token_to_span(&assign), assign));
}
self.assign_next()?; // Consume the `=`
let value = self.expression()?.ok_or(Error::UnexpectedEOF)?;
let semi = self.get_next()?.ok_or(Error::UnexpectedEOF)?;
if !token_matches!(semi, TokenType::Symbol(Symbol::Semicolon)) {
return Err(Error::UnexpectedToken(Self::token_to_span(&semi), semi));
}
Ok(Expression::TupleDeclaration(Spanned {
span: names.first().map(|n| n.span).unwrap_or(value.span),
node: TupleDeclarationExpression {
names,
value: boxed!(value),
},
}))
} }
fn invocation(&mut self) -> Result<InvocationExpression<'a>, Error<'a>> { fn invocation(&mut self) -> Result<InvocationExpression<'a>, Error<'a>> {

View File

@@ -112,7 +112,7 @@ fn test_function_invocation() -> Result<()> {
#[test] #[test]
fn test_priority_expression() -> Result<()> { fn test_priority_expression() -> Result<()> {
let input = r#" let input = r#"
let x = (4); let x = (4 + 3);
"#; "#;
let tokenizer = Tokenizer::from(input); let tokenizer = Tokenizer::from(input);
@@ -120,7 +120,7 @@ fn test_priority_expression() -> Result<()> {
let expression = parser.parse()?.unwrap(); let expression = parser.parse()?.unwrap();
assert_eq!("(let x = 4)", expression.to_string()); assert_eq!("(let x = ((4 + 3)))", expression.to_string());
Ok(()) Ok(())
} }
@@ -137,7 +137,7 @@ fn test_binary_expression() -> Result<()> {
assert_eq!("(((45 * 2) - (15 / 5)) + (5 ** 2))", expr.to_string()); assert_eq!("(((45 * 2) - (15 / 5)) + (5 ** 2))", expr.to_string());
let expr = parser!("(5 - 2) * 10;").parse()?.unwrap(); let expr = parser!("(5 - 2) * 10;").parse()?.unwrap();
assert_eq!("((5 - 2) * 10)", expr.to_string()); assert_eq!("(((5 - 2)) * 10)", expr.to_string());
Ok(()) Ok(())
} }
@@ -170,7 +170,7 @@ fn test_ternary_expression() -> Result<()> {
fn test_complex_binary_with_ternary() -> Result<()> { fn test_complex_binary_with_ternary() -> Result<()> {
let expr = parser!("let i = (x ? 1 : 3) * 2;").parse()?.unwrap(); let expr = parser!("let i = (x ? 1 : 3) * 2;").parse()?.unwrap();
assert_eq!("(let i = ((x ? 1 : 3) * 2))", expr.to_string()); assert_eq!("(let i = (((x ? 1 : 3)) * 2))", expr.to_string());
Ok(()) Ok(())
} }
@@ -191,3 +191,99 @@ fn test_nested_ternary_right_associativity() -> Result<()> {
assert_eq!("(let i = (a ? b : (c ? d : e)))", expr.to_string()); assert_eq!("(let i = (a ? b : (c ? d : e)))", expr.to_string());
Ok(()) Ok(())
} }
#[test]
fn test_tuple_declaration() -> Result<()> {
let expr = parser!("let (x, _) = (1, 2);").parse()?.unwrap();
assert_eq!("(let (x, _) = (1, 2))", expr.to_string());
Ok(())
}
#[test]
fn test_tuple_assignment() -> Result<()> {
let expr = parser!("(x, y) = (1, 2);").parse()?.unwrap();
assert_eq!("((x, y) = (1, 2))", expr.to_string());
Ok(())
}
#[test]
fn test_tuple_assignment_with_underscore() -> Result<()> {
let expr = parser!("(x, _) = (1, 2);").parse()?.unwrap();
assert_eq!("((x, _) = (1, 2))", expr.to_string());
Ok(())
}
#[test]
fn test_tuple_declaration_with_function_call() -> Result<()> {
let expr = parser!("let (x, y) = doSomething();").parse()?.unwrap();
assert_eq!("(let (x, y) = doSomething())", expr.to_string());
Ok(())
}
#[test]
fn test_tuple_declaration_with_function_call_with_underscore() -> Result<()> {
let expr = parser!("let (x, _) = doSomething();").parse()?.unwrap();
assert_eq!("(let (x, _) = doSomething())", expr.to_string());
Ok(())
}
#[test]
fn test_tuple_assignment_with_function_call() -> Result<()> {
let expr = parser!("(x, y) = doSomething();").parse()?.unwrap();
assert_eq!("((x, y) = doSomething())", expr.to_string());
Ok(())
}
#[test]
fn test_tuple_assignment_with_function_call_with_underscore() -> Result<()> {
let expr = parser!("(x, _) = doSomething();").parse()?.unwrap();
assert_eq!("((x, _) = doSomething())", expr.to_string());
Ok(())
}
#[test]
fn test_tuple_declaration_with_complex_expressions() -> Result<()> {
let expr = parser!("let (x, y) = (1 + 1, doSomething());")
.parse()?
.unwrap();
assert_eq!("(let (x, y) = ((1 + 1), doSomething()))", expr.to_string());
Ok(())
}
#[test]
fn test_tuple_assignment_with_complex_expressions() -> Result<()> {
let expr = parser!("(x, y) = (doSomething(), 123 / someValue.Setting);")
.parse()?
.unwrap();
assert_eq!(
"((x, y) = (doSomething(), (123 / someValue.Setting)))",
expr.to_string()
);
Ok(())
}
#[test]
fn test_tuple_declaration_all_complex_expressions() -> Result<()> {
let expr = parser!("let (x, y) = (a + b, c * d);").parse()?.unwrap();
assert_eq!("(let (x, y) = ((a + b), (c * d)))", expr.to_string());
Ok(())
}

View File

@@ -245,6 +245,42 @@ impl<'a> std::fmt::Display for DeviceDeclarationExpression<'a> {
} }
} }
#[derive(Debug, PartialEq, Eq)]
pub struct TupleDeclarationExpression<'a> {
pub names: Vec<Spanned<Cow<'a, str>>>,
pub value: Box<Spanned<Expression<'a>>>,
}
impl<'a> std::fmt::Display for TupleDeclarationExpression<'a> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
let names = self
.names
.iter()
.map(|n| n.node.to_string())
.collect::<Vec<_>>()
.join(", ");
write!(f, "(let ({}) = {})", names, self.value)
}
}
#[derive(Debug, PartialEq, Eq)]
pub struct TupleAssignmentExpression<'a> {
pub names: Vec<Spanned<Cow<'a, str>>>,
pub value: Box<Spanned<Expression<'a>>>,
}
impl<'a> std::fmt::Display for TupleAssignmentExpression<'a> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
let names = self
.names
.iter()
.map(|n| n.node.to_string())
.collect::<Vec<_>>()
.join(", ");
write!(f, "(({}) = {})", names, self.value)
}
}
#[derive(Debug, PartialEq, Eq)] #[derive(Debug, PartialEq, Eq)]
pub struct IfExpression<'a> { pub struct IfExpression<'a> {
pub condition: Box<Spanned<Expression<'a>>>, pub condition: Box<Spanned<Expression<'a>>>,
@@ -348,6 +384,9 @@ pub enum Expression<'a> {
Return(Option<Box<Spanned<Expression<'a>>>>), Return(Option<Box<Spanned<Expression<'a>>>>),
Syscall(Spanned<SysCall<'a>>), Syscall(Spanned<SysCall<'a>>),
Ternary(Spanned<TernaryExpression<'a>>), Ternary(Spanned<TernaryExpression<'a>>),
Tuple(Spanned<Vec<Spanned<Expression<'a>>>>),
TupleAssignment(Spanned<TupleAssignmentExpression<'a>>),
TupleDeclaration(Spanned<TupleDeclarationExpression<'a>>),
Variable(Spanned<Cow<'a, str>>), Variable(Spanned<Cow<'a, str>>),
While(Spanned<WhileExpression<'a>>), While(Spanned<WhileExpression<'a>>),
} }
@@ -384,8 +423,20 @@ impl<'a> std::fmt::Display for Expression<'a> {
), ),
Expression::Syscall(e) => write!(f, "{}", e), Expression::Syscall(e) => write!(f, "{}", e),
Expression::Ternary(e) => write!(f, "{}", e), Expression::Ternary(e) => write!(f, "{}", e),
Expression::Tuple(e) => {
let items = e
.node
.iter()
.map(|x| x.to_string())
.collect::<Vec<_>>()
.join(", ");
write!(f, "({})", items)
}
Expression::TupleAssignment(e) => write!(f, "{}", e),
Expression::TupleDeclaration(e) => write!(f, "{}", e),
Expression::Variable(id) => write!(f, "{}", id), Expression::Variable(id) => write!(f, "{}", id),
Expression::While(e) => write!(f, "{}", e), Expression::While(e) => write!(f, "{}", e),
} }
} }
} }