23 Commits

Author SHA1 Message Date
8029fa82b0 complex tuple expressions supported 2025-12-30 02:38:32 -07:00
6d8a22459c wip 2025-12-30 02:31:21 -07:00
20f0f4b9a1 working tuple types 2025-12-30 00:58:02 -07:00
5a88befac9 tuple return types just about implemented 2025-12-30 00:32:55 -07:00
e94fc0f5de Functions returning tuples somewhat working, but they clobber the popped ra 2025-12-29 23:55:00 -07:00
b51800eb77 wip -- tuples compiling. need more work on function invocations 2025-12-29 23:17:18 -07:00
87951ab12f Support tuple assignment expressions and tuple assignments and declarations with function invocations 2025-12-29 22:33:16 -07:00
00b0d4df26 Create new tuple expression types 2025-12-29 22:17:19 -07:00
6ca53e8959 Merge pull request 'Added support for CRLF windows line endings' (#11) from 41-support-windows-crlf-line-endings into master
All checks were successful
CI/CD Pipeline / test (push) Successful in 33s
CI/CD Pipeline / build (push) Successful in 1m42s
CI/CD Pipeline / release (push) Successful in 5s
Reviewed-on: #11
2025-12-29 12:32:59 -07:00
8dfdad3f34 Added support for CRLF windows line endings
All checks were successful
CI/CD Pipeline / test (pull_request) Successful in 34s
CI/CD Pipeline / build (pull_request) Has been skipped
CI/CD Pipeline / release (pull_request) Has been skipped
2025-12-29 12:29:01 -07:00
e272737ea2 Merge pull request 'Fixed const -> let bug' (#10) from declaration_const_as_let into master
All checks were successful
CI/CD Pipeline / test (push) Successful in 32s
CI/CD Pipeline / build (push) Successful in 1m43s
CI/CD Pipeline / release (push) Successful in 5s
Reviewed-on: #10
2025-12-29 02:44:50 -07:00
f679601818 Fixed const -> let bug
All checks were successful
CI/CD Pipeline / test (pull_request) Successful in 33s
CI/CD Pipeline / build (pull_request) Has been skipped
CI/CD Pipeline / release (pull_request) Has been skipped
2025-12-29 02:31:23 -07:00
3ca6f97db1 Merge pull request 'IC10Editor fix' (#9) from live-reload into master
All checks were successful
CI/CD Pipeline / test (push) Successful in 33s
CI/CD Pipeline / build (push) Successful in 1m41s
CI/CD Pipeline / release (push) Successful in 4s
Reviewed-on: #9
2025-12-27 22:26:50 -07:00
34817ee111 Merge branch 'master' of ssh://git.biddydev.com:2222/dbidwell/stationeers_lang into live-reload
All checks were successful
CI/CD Pipeline / test (pull_request) Successful in 32s
CI/CD Pipeline / build (pull_request) Has been skipped
CI/CD Pipeline / release (pull_request) Has been skipped
2025-12-27 22:19:09 -07:00
9eef8a77b6 Merge pull request 'Update About.xml docs for the workshop' (#8) from documentation into master
All checks were successful
CI/CD Pipeline / test (push) Successful in 34s
CI/CD Pipeline / build (push) Successful in 1m41s
CI/CD Pipeline / release (push) Has been skipped
Reviewed-on: #8
2025-12-27 22:19:00 -07:00
de31851153 Fixed IC10Editor implementation bug where IC10 code would not update after clicking 'Cancel' 2025-12-27 22:18:21 -07:00
3543b87561 wip 2025-12-27 16:03:36 -07:00
effef64add Update About.xml docs for the workshop
All checks were successful
CI/CD Pipeline / test (pull_request) Successful in 33s
CI/CD Pipeline / build (pull_request) Has been skipped
CI/CD Pipeline / release (pull_request) Has been skipped
2025-12-26 22:33:48 -07:00
794b27b8c6 Merge pull request 'documentation' (#7) from documentation into master
All checks were successful
CI/CD Pipeline / test (push) Successful in 33s
CI/CD Pipeline / build (push) Successful in 1m42s
CI/CD Pipeline / release (push) Has been skipped
Reviewed-on: #7
2025-12-26 22:02:46 -07:00
27e8987831 removed the temporary example slang scripts from the root directory
All checks were successful
CI/CD Pipeline / test (pull_request) Successful in 34s
CI/CD Pipeline / build (pull_request) Has been skipped
CI/CD Pipeline / release (pull_request) Has been skipped
2025-12-26 22:00:28 -07:00
0fdceac22c changed markdown tags from slang to rust 2025-12-26 21:57:11 -07:00
85f8b136e1 Update markdown tags to use rust instead of mips 2025-12-26 21:56:21 -07:00
c91086157a Added documentation for various language features and in-game functions. Added example scripts 2025-12-26 21:55:36 -07:00
22 changed files with 3344 additions and 288 deletions

View File

@@ -1,5 +1,25 @@
# Changelog # Changelog
[0.4.7]
- Added support for Windows CRLF endings
[0.4.6]
- Fixed bug in compiler where you were unable to assign a `const` value to
a `let` variable
[0.4.5]
- Fixed issue where after clicking "Cancel" on the IC10 Editor, the side-by-side
IC10 output would no longer update with highlighting or code updates.
- Added ability to live-reload the mod while developing using the `ScriptEngine`
mod from BepInEx
- This required adding in cleanup code to cleanup references to the Rust DLL
before destroying the mod instance.
- Added BepInEx debug logging. This will ONLY show if you have debug logs
enabled in the BepInEx configuration file.
[0.4.4] [0.4.4]
- Added Stationpedia docs back after removing all harmony patches from the mod - Added Stationpedia docs back after removing all harmony patches from the mod

View File

@@ -2,11 +2,11 @@
<ModMetadata xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <ModMetadata xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<Name>Slang</Name> <Name>Slang</Name>
<Author>JoeDiertay</Author> <Author>JoeDiertay</Author>
<Version>0.4.4</Version> <Version>0.4.7</Version>
<Description> <Description>
[h1]Slang: High-Level Programming for Stationeers[/h1] [h1]Slang: High-Level Programming for Stationeers[/h1]
Stop writing assembly. Start writing code. Iterate faster. Stop writing assembly. Start writing code.
Slang (Stationeers Language) brings modern programming to Stationeers. It allows you to write scripts using a familiar C-style syntax (variables, functions, if/else, loops) directly in the in-game editor. When you hit confirm, Slang compiles your code into IC10 instantly. Slang (Stationeers Language) brings modern programming to Stationeers. It allows you to write scripts using a familiar C-style syntax (variables, functions, if/else, loops) directly in the in-game editor. When you hit confirm, Slang compiles your code into IC10 instantly.
@@ -15,7 +15,7 @@ Slang (Stationeers Language) brings modern programming to Stationeers. It allows
[h2]Features[/h2] [h2]Features[/h2]
[list] [list]
[*] [b]In-Game Compilation:[/b] No external tools needed. Write Slang directly in the IC editor. [*] [b]In-Game Compilation:[/b] No external tools needed. Write Slang directly in the IC editor.
[*] [b]No More Register Juggling:[/b] Define variables with let (e.g., let temp = 300). The compiler manages r0-r15 for you. [*] [b]No More Register Juggling:[/b] Define variables with let (e.g., let temp = 200c). The compiler manages r0-r15 for you.
[*] [b]Control Flow:[/b] Write readable logic with if, else, while, loop, break, and continue. [*] [b]Control Flow:[/b] Write readable logic with if, else, while, loop, break, and continue.
[*] [b]Functions:[/b] Create reusable code blocks with arguments. [*] [b]Functions:[/b] Create reusable code blocks with arguments.
[*] [b]Smart Editor:[/b] Get real-time syntax highlighting and error checking (red text) as you type. [*] [b]Smart Editor:[/b] Get real-time syntax highlighting and error checking (red text) as you type.
@@ -53,14 +53,13 @@ loop {
[h2]Known Issues (Beta)[/h2] [h2]Known Issues (Beta)[/h2]
[list] [list]
[*] [b]Stack Access:[/b] Direct stack memory access is disabled to prevent conflicts with the compiler's internal memory management. A workaround is being planned. [*] [b]Stack Access:[/b] Direct stack memory access is disabled to prevent conflicts with the compiler's internal memory management. A workaround is being planned.
[*] [b]Documentation:[/b] In-game tooltips for syscalls (like load, set) are WIP. Check the "Slang" entry in the Stationpedia (F1) for help. [*] [b]Documentation:[/b] In-game tooltips for syscalls (like load, set) are WIP. Check the "Slang" entry in the Stationpedia (F1) for help, or checkout [url=https://github.com/dbidwell94/stationeers_lang/blob/master/docs/getting-started.md]The Docs[/url] for guides on how to get started.
[/list] [/list]
[h2]Planned Features[/h2] [h2]Planned Features[/h2]
[list] [list]
[*] Enhanced LSP features (Autocomplete, Go to Definition). [*] Enhanced LSP features (Autocomplete, Go to Definition).
[*] Full feature parity with all IC10 instructions. [*] Full feature parity with all IC10 instructions.
[*] Tutorials and beginner script examples.
[/list] [/list]
[h2]FAQ[/h2] [h2]FAQ[/h2]
@@ -70,10 +69,18 @@ A: The Slang compiler is built in Rust for performance and reliability. It is co
[b]Q: Is this compatible with my current save?[/b] [b]Q: Is this compatible with my current save?[/b]
A: Yes! Slang does not modify any existing IC10 code, it is only a compiler. As a matter of fact: if you wish to stop using Slang at any time, your compiled IC10 will still exist on the chip. However: Slang adds a comment at the bottom of your compiled IC10 which is a GZIP and base64 encoded version of your Slang source code. This might break line limits with Slang not installed. If you wish to no longer use Slang, I recommend you remove this comment from the source code after uninstalling Slang. A: Yes! Slang does not modify any existing IC10 code, it is only a compiler. As a matter of fact: if you wish to stop using Slang at any time, your compiled IC10 will still exist on the chip. However: Slang adds a comment at the bottom of your compiled IC10 which is a GZIP and base64 encoded version of your Slang source code. This might break line limits with Slang not installed. If you wish to no longer use Slang, I recommend you remove this comment from the source code after uninstalling Slang.
[b]Q: Does this modify the in-game scripting language[/b]
A: No! Slang compiles directly to IC10. Any valid Slang file will produce valid IC10. The goal of this mod is twofold:
[list]
[*] Allow experienced users to quickly iterate on their scripts to get back into base upgrades faster
[*] Allow newcomers who already know C-style languages (JS/C#/Java/Rust/C/etc) to see how it maps to IC10 so they can get to understand IC10 better
[/list]
[h2]Useful Links[/h2] [h2]Useful Links[/h2]
[url=https://github.com/dbidwell94/stationeers_lang]Source Code on GitHub[/url] [url=https://github.com/dbidwell94/stationeers_lang]Source Code on GitHub[/url]
[url=https://discord.gg/stationeers]Stationeers Official Discord[/url] [url=https://discord.gg/stationeers]Stationeers Official Discord[/url]
[url=https://discord.gg/M4sCfYMacs]Stationeers Modding Discord[/url] [url=https://discord.gg/M4sCfYMacs]Stationeers Modding Discord[/url]
[url=https://github.com/dbidwell94/stationeers_lang/blob/master/docs/getting-started.md]Getting Started Guide[/url]
</Description> </Description>
<ChangeLog xsi:nil="true" /> <ChangeLog xsi:nil="true" />
<WorkshopHandle>3619985558</WorkshopHandle> <WorkshopHandle>3619985558</WorkshopHandle>
@@ -116,5 +123,7 @@ A: Yes! Slang does not modify any existing IC10 code, it is only a compiler. As
See: https://github.com/StationeersLaunchPad/StationeersLaunchPad See: https://github.com/StationeersLaunchPad/StationeersLaunchPad
Source Code: https://github.com/dbidwell94/stationeers_lang Source Code: https://github.com/dbidwell94/stationeers_lang
Documentation: https://github.com/dbidwell94/stationeers_lang/blob/master/docs/getting-started.md
]]></InGameDescription> ]]></InGameDescription>
</ModMetadata> </ModMetadata>

View File

@@ -1,30 +1,45 @@
# Stationeers Language (slang) # Slang Language Documentation
This is an ambitious attempt at creating: Slang is a high-level programming language that compiles to IC10 assembly for [Stationeers](https://store.steampowered.com/app/544550/Stationeers/).
It provides a familiar C-like syntax while targeting the limited instruction set
- A new programming language (slang) of in-game IC10.
- A compiler to translate slang -> IC10
- A mod to allow direct input of slang in the in-game script editor to ## Quick Links
automatically compile to IC10 before running
- [Getting Started](docs/getting-started.md) - Installation and first program
This project currently outputs 3 files: - [Language Reference](docs/language-reference.md) - Complete syntax guide
- [Built-in Functions](docs/builtins.md) - System calls and math functions
- A Linux CLI - [Examples](docs/examples.md) - Real-world code samples
- A Windows CLI
- A Windows FFI dll ## Overview
- Contains a single function: `compile_from_string`
Slang aims to reduce the time spent writing IC10 assembly by providing:
The aim of this project is to lower the amount of time it takes to code simple
scripts in Stationeers so you can get back to engineering atmospherics or - **Familiar syntax** - C-like declarations, control flow, and expressions
whatever you are working on. This project is NOT meant to fully replace IC10. - **Device abstraction** - Named device bindings with property access
Obviously hand-coded assembly written by an experienced programmer is more - **Automatic register allocation** - No manual register management
optimized and smaller than something that a C compiler will spit out. This is - **Built-in functions** - Math operations and device I/O as function calls
the same way. It WILL produce valid IC10, but for large complicated projects it - **Temperature literals** - Native support for Celsius, Fahrenheit, and Kelvin
might produce over the allowed limit of lines the in-game editor supports.
## Example
Current Unknowns
```rust
- Should I support a configurable script line length in-game to allow larger device gasSensor = "d0";
scripts to be saved? device airCon = "d1";
- Should compilation be "behind the scenes" (in game editor will ALWAYS be what
you put in. IC10 will be IC10, slang will be slang) const TARGET_TEMP = 20c;
loop {
yield();
airCon.On = gasSensor.Temperature > TARGET_TEMP;
}
```
This compiles to IC10 that monitors temperature and controls an air
conditioner.
## Project Status
Slang is under active development. It may produce suboptimal code for complex programs.
It is not a replacement for IC10, for performance-critical or large scripts,
hand-written IC10 may still be preferred.

View File

@@ -6,7 +6,6 @@ using System.Linq;
using System.Threading; using System.Threading;
using System.Threading.Tasks; using System.Threading.Tasks;
using StationeersIC10Editor; using StationeersIC10Editor;
using StationeersIC10Editor.IC10;
public class SlangFormatter : ICodeFormatter public class SlangFormatter : ICodeFormatter
{ {
@@ -14,8 +13,25 @@ public class SlangFormatter : ICodeFormatter
private CancellationTokenSource? _lspCancellationToken; private CancellationTokenSource? _lspCancellationToken;
private object _tokenLock = new(); private object _tokenLock = new();
protected Editor? Ic10Editor = null; protected Editor? __Ic10Editor = null;
private IC10CodeFormatter iC10CodeFormatter = new IC10CodeFormatter();
protected Editor Ic10Editor
{
get
{
if (__Ic10Editor == null)
{
var tab = Editor.ParentTab;
tab.ClearExtraEditors();
__Ic10Editor = new Editor(Editor.KeyHandler);
Ic10Editor.IsReadOnly = true;
tab.AddEditor(__Ic10Editor);
}
return __Ic10Editor;
}
}
private string ic10CompilationResult = ""; private string ic10CompilationResult = "";
private List<SourceMapEntry> ic10SourceMap = new(); private List<SourceMapEntry> ic10SourceMap = new();
@@ -80,7 +96,7 @@ public class SlangFormatter : ICodeFormatter
{ {
if (!Marshal.CompileFromString(RawText, out var compilationResult, out var sourceMap)) if (!Marshal.CompileFromString(RawText, out var compilationResult, out var sourceMap))
{ {
return "Compilation Error"; return "# Compilation Error";
} }
return compilationResult + $"\n{EncodeSource(RawText, SLANG_SRC)}"; return compilationResult + $"\n{EncodeSource(RawText, SLANG_SRC)}";
@@ -118,6 +134,10 @@ public class SlangFormatter : ICodeFormatter
return styledLine; return styledLine;
} }
/// <summary>
/// This handles calling the `HandleLsp` function by creating a new `CancellationToken` and
/// cancelling the current call if applicable.
/// </summary>
private void HandleCodeChanged() private void HandleCodeChanged()
{ {
CancellationToken token; CancellationToken token;
@@ -133,6 +153,11 @@ public class SlangFormatter : ICodeFormatter
_ = HandleLsp(inputSrc, token); _ = HandleLsp(inputSrc, token);
} }
/// <summary>
/// Takes a copy of the current source code and sends it to the Rust compiler in a background thread
/// to get diagnostic data. This also handles getting a compilation response of optimized IC10 for the
/// side-by-side IC10Editor to show with sourcemap highlighting.
/// </summary>
private async Task HandleLsp(string inputSrc, CancellationToken cancellationToken) private async Task HandleLsp(string inputSrc, CancellationToken cancellationToken)
{ {
try try
@@ -165,24 +190,21 @@ public class SlangFormatter : ICodeFormatter
return; return;
} }
var (compilationSuccess, compiled, sourceMap) = await Task.Run( var (compilationSuccess, compiled, sourceMap) = await Task.Run(() =>
() => {
{ var successful = Marshal.CompileFromString(
var successful = Marshal.CompileFromString( inputSrc,
inputSrc, out var compiled,
out var compiled, out var sourceMap
out var sourceMap );
); return (successful, compiled, sourceMap);
return (successful, compiled, sourceMap); });
},
cancellationToken
);
if (compilationSuccess) if (compilationSuccess)
{ {
ic10CompilationResult = compiled; ic10CompilationResult = compiled;
ic10SourceMap = sourceMap; ic10SourceMap = sourceMap;
UpdateIc10Formatter(); UpdateIc10Content(Ic10Editor);
} }
} }
catch (OperationCanceledException) { } catch (OperationCanceledException) { }
@@ -192,22 +214,24 @@ public class SlangFormatter : ICodeFormatter
} }
} }
/// <summary>
/// Updates the underlying code in the IC10 Editor, after which will call `UpdateIc10Formatter` to
/// update highlighting of relavent fields.
/// </summary>
private void UpdateIc10Content(Editor editor)
{
editor.ResetCode(ic10CompilationResult);
UpdateIc10Formatter();
}
// This runs on the main thread. This function ONLY updates the highlighting of the IC10 code.
// If you need to update the code in the editor itself, you should use `UpdateIc10Content`.
private void UpdateIc10Formatter() private void UpdateIc10Formatter()
{ {
var tab = Editor.ParentTab; // Bail if our backing field is null. We don't want to set the field in this function. It
if (Ic10Editor == null) // runs way too much and we might not even have source code to use.
{ if (__Ic10Editor == null)
iC10CodeFormatter = new IC10CodeFormatter(); return;
Ic10Editor = new Editor(Editor.KeyHandler);
Ic10Editor.IsReadOnly = true;
iC10CodeFormatter.Editor = Ic10Editor;
}
if (tab.Editors.Count < 2)
{
tab.AddEditor(Ic10Editor);
}
var caretPos = Editor.CaretPos.Line; var caretPos = Editor.CaretPos.Line;
// get the slang sourceMap at the current editor line // get the slang sourceMap at the current editor line
@@ -215,10 +239,6 @@ public class SlangFormatter : ICodeFormatter
entry.SlangSource.StartLine == caretPos || entry.SlangSource.EndLine == caretPos entry.SlangSource.StartLine == caretPos || entry.SlangSource.EndLine == caretPos
); );
// extract the current "context" of the ic10 compilation. The current Slang source line
// should be directly next to the compiled IC10 source line, and we should highlight the
// IC10 code that directly represents the Slang source
Ic10Editor.ResetCode(ic10CompilationResult); Ic10Editor.ResetCode(ic10CompilationResult);
if (lines.Count() < 1) if (lines.Count() < 1)
@@ -245,7 +265,11 @@ public class SlangFormatter : ICodeFormatter
}; };
} }
// This runs on the Main Thread /// <summary>
/// Takes diagnostics from the Rust FFI compiler and applies it as semantic tokens to the
/// source in this editor.
/// This runs on the Main Thread
/// </summary>
private void ApplyDiagnostics(Dictionary<uint, IGrouping<uint, Diagnostic>> dict) private void ApplyDiagnostics(Dictionary<uint, IGrouping<uint, Diagnostic>> dict)
{ {
HashSet<uint> linesToRefresh; HashSet<uint> linesToRefresh;

View File

@@ -67,7 +67,9 @@ public static class Marshal
try try
{ {
_libraryHandle = LoadLibrary(ExtractNativeLibrary(Ffi.RustLib)); _libraryHandle = LoadLibrary(ExtractNativeLibrary(Ffi.RustLib));
L.Debug("Rust DLL loaded successfully. Enjoy native speed compilations!");
CodeFormatters.RegisterFormatter("Slang", typeof(SlangFormatter), true); CodeFormatters.RegisterFormatter("Slang", typeof(SlangFormatter), true);
return true; return true;
} }
catch (Exception ex) catch (Exception ex)
@@ -91,8 +93,13 @@ public static class Marshal
try try
{ {
FreeLibrary(_libraryHandle); CodeFormatters.RegisterFormatter("Slang", typeof(PlainTextFormatter), true);
if (!FreeLibrary(_libraryHandle))
{
L.Warning("Unable to free Rust library");
}
_libraryHandle = IntPtr.Zero; _libraryHandle = IntPtr.Zero;
L.Debug("Rust DLL library freed");
return true; return true;
} }
catch (Exception ex) catch (Exception ex)
@@ -191,9 +198,9 @@ public static class Marshal
Assembly assembly = Assembly.GetExecutingAssembly(); Assembly assembly = Assembly.GetExecutingAssembly();
using (Stream stream = assembly.GetManifestResourceStream(libName)) using (Stream resourceStream = assembly.GetManifestResourceStream(libName))
{ {
if (stream == null) if (resourceStream == null)
{ {
L.Error( L.Error(
$"{libName} not found. This means it was not embedded in the mod. Please contact the mod author!" $"{libName} not found. This means it was not embedded in the mod. Please contact the mod author!"
@@ -201,18 +208,85 @@ public static class Marshal
return ""; return "";
} }
// Check if file exists and contents are identical to avoid overwriting locked files
if (File.Exists(destinationPath))
{
try
{
using (
FileStream fileStream = new FileStream(
destinationPath,
FileMode.Open,
FileAccess.Read,
FileShare.ReadWrite
)
)
{
if (resourceStream.Length == fileStream.Length)
{
if (StreamsContentsAreEqual(resourceStream, fileStream))
{
L.Debug(
$"DLL {libName} already exists and matches. Skipping extraction."
);
return destinationPath;
}
}
}
}
catch (IOException ex)
{
L.Warning(
$"Could not verify existing {libName}, attempting overwrite. {ex.Message}"
);
}
}
resourceStream.Position = 0;
// Attempt to overwrite if missing or different
try try
{ {
using (FileStream fileStream = new FileStream(destinationPath, FileMode.Create)) using (FileStream fileStream = new FileStream(destinationPath, FileMode.Create))
{ {
stream.CopyTo(fileStream); resourceStream.CopyTo(fileStream);
} }
return destinationPath; return destinationPath;
} }
catch (IOException e) catch (IOException e)
{ {
L.Warning($"Could not overwrite {libName} (it might be in use): {e.Message}"); // If we fail here, the file is likely locked.
return ""; // However, if we are here, it means the file is DIFFERENT or we couldn't read it.
// As a fallback for live-reload, we can try returning the path anyway
// assuming the existing locked file might still work.
L.Warning(
$"Could not overwrite {libName} (it might be in use): {e.Message}. Attempting to use existing file."
);
return destinationPath;
}
}
}
private static bool StreamsContentsAreEqual(Stream stream1, Stream stream2)
{
const int bufferSize = 4096;
byte[] buffer1 = new byte[bufferSize];
byte[] buffer2 = new byte[bufferSize];
while (true)
{
int count1 = stream1.Read(buffer1, 0, bufferSize);
int count2 = stream2.Read(buffer2, 0, bufferSize);
if (count1 != count2)
return false;
if (count1 == 0)
return true;
for (int i = 0; i < count1; i++)
{
if (buffer1[i] != buffer2[i])
return false;
} }
} }
} }

View File

@@ -1,4 +1,3 @@
using System.Text.RegularExpressions;
using BepInEx; using BepInEx;
using HarmonyLib; using HarmonyLib;
@@ -40,43 +39,32 @@ namespace Slang
{ {
public const string PluginGuid = "com.biddydev.slang"; public const string PluginGuid = "com.biddydev.slang";
public const string PluginName = "Slang"; public const string PluginName = "Slang";
public const string PluginVersion = "0.4.4"; public const string PluginVersion = "0.4.7";
private Harmony? _harmony; private static Harmony? _harmony;
private static Regex? _slangSourceCheck = null; public void Awake()
private static Regex SlangSourceCheck
{
get
{
if (_slangSourceCheck is null)
{
_slangSourceCheck = new Regex(@"[;{}()]|\b(let|fn|device)\b|\/\/");
}
return _slangSourceCheck;
}
}
public static bool IsSlangSource(ref string input)
{
return SlangSourceCheck.IsMatch(input);
}
private void Awake()
{ {
L.SetLogger(Logger); L.SetLogger(Logger);
this._harmony = new Harmony(PluginGuid); _harmony = new Harmony(PluginGuid);
// If we failed to load the compiler, bail from the rest of the patches. It won't matter, // If we failed to load the compiler, bail from the rest of the patches. It won't matter,
// as the compiler itself has failed to load. // as the compiler itself has failed to load.
if (!Marshal.Init()) if (!Marshal.Init())
{ {
L.Error("Marshal failed to init");
return; return;
} }
this._harmony.PatchAll(); _harmony.PatchAll();
L.Debug("Ran Harmony patches");
}
public void OnDestroy()
{
Marshal.Destroy();
_harmony?.UnpatchSelf();
L.Debug("Cleaned up Harmony patches");
} }
} }
} }

302
docs/builtins.md Normal file
View File

@@ -0,0 +1,302 @@
# Built-in Functions
<!--toc:start-->
- [Built-in Functions](#built-in-functions)
- [System Functions](#system-functions)
- [`yield()`](#yield)
- [`sleep(ticks)`](#sleepticks)
- [`hash(prefabName)`](#hashprefabname)
- [Device I/O Functions](#device-io-functions)
- [Reading from Devices](#reading-from-devices)
- [Load from device](#load-from-device)
- [Load From Device Batched](#load-from-device-batched)
- [Load From Device Batched Named](#load-from-device-batched-named)
- [Load Slot](#load-slot)
- [Load Reagent](#load-reagent)
- [Writing to Devices](#writing-to-devices)
- [Set On Device](#set-on-device)
- [Set On Device Batched](#set-on-device-batched)
- [Set On Device Batched Named](#set-on-device-batched-named)
- [Set Slot](#set-slot)
- [Math Functions](#math-functions)
- [Trigonometric Functions](#trigonometric-functions)
- [Trig Example](#trig-example)
- [Rounding Functions](#rounding-functions)
- [Rounding Example](#rounding-example)
- [Other Math Functions](#other-math-functions)
- [Math Example](#math-example)
- [See Also](#see-also)
<!--toc:end-->
Slang provides built-in functions for device I/O and mathematical operations.
These map directly to IC10 instructions.
## System Functions
### `yield()`
Pauses execution for exactly one game tick.
```rust
yield();
```
**IC10:** `yield`
---
### `sleep(ticks)`
Pauses execution for the specified number of ticks.
```rust
sleep(10); // Sleep for 10 ticks
```
**IC10:** `sleep ticks`
---
### `hash(prefabName)`
Computes the in-game hash for a prefab name. The hash is computed at compile
time and no runtime code is generated.
```rust
const AC_HASH = hash("StructureAirConditioner");
```
**Note:** This is different from IC10's `hash` instruction, which computes the
hash at runtime.
```rust
setBatched(AC_HASH, "On", 0);
```
**IC10:** `sb -2087593337 On 0` (no hash computation at runtime)
---
## Device I/O Functions
### Reading from Devices
#### Load from device
`load(device, property)` / `l(device, property)`
Loads a property value from a device:
```rust
let temp = load(sensor, "Temperature");
let temp = l(sensor, "Temperature");
// Preferred: use dot notation
let temp = sensor.Temperature;
```
**IC10:** `l r? d? var`
---
#### Load From Device Batched
`loadBatched(deviceHash, property, batchMode)` / `lb(...)`
Loads a property from all devices matching a hash, aggregated by batch mode:
```rust
const SENSOR = hash("StructureGasSensor");
let avgTemp = loadBatched(SENSOR, "Temperature", "Average");
let maxTemp = lb(SENSOR, "Temperature", "Maximum");
```
**Batch Modes:** `"Average"`, `"Sum"`, `"Minimum"`, `"Maximum"`
**IC10:** `lb r? deviceHash logicType batchMode`
---
#### Load From Device Batched Named
`loadBatchedNamed(deviceHash, nameHash, property, batchMode)` / `lbn(...)`
Loads a property from devices matching both device hash and name hash:
```rust
const SENSOR_HASH = hash("StructureGasSensor");
const SENSOR_NAME_HASH = hash("Outdoor Gas Sensor");
let avgTemp = loadBatchedNamed(SENSOR_HASH, SENSOR_NAME_HASH, "Temperature", "Average");
let maxTemp = lbn(SENSOR_HASH, SENSOR_NAME_HASH, "Temperature", "Maximum");
```
**IC10:** `lbn r? deviceHash nameHash logicType batchMode`
**Note:** This function is useful when a script interfaces with a lot of
devices, as it allows for arbitrary device access without limited to the 6 `dx` pins.
---
#### Load Slot
`loadSlot(device, slotIndex, property)` / `ls(...)`
Loads a slot property from a device:
```rust
let occupied = loadSlot(sorter, 0, "Occupied");
let occupied = ls(sorter, 0, "Occupied");
```
**IC10:** `ls r? d? slotIndex logicSlotType`
---
#### Load Reagent
`loadReagent(device, reagentMode, reagentHash)` / `lr(...)`
Loads reagent information from a device:
```rust
let amount = loadReagent(furnace, "Contents", reagentHash);
let amount = lr(furnace, "Contents", reagentHash);
```
**IC10:** `lr r? d? reagentMode reagentHash`
---
### Writing to Devices
#### Set On Device
`set(device, property, value)` / `s(...)`
Sets a property on a device:
```rust
set(valve, "On", true);
s(valve, "On", true);
// Preferred: use dot notation
valve.On = true;
```
**IC10:** `s d? logicType r?`
---
#### Set On Device Batched
`setBatched(deviceHash, property, value)` / `sb(...)`
Sets a property on all devices matching a hash:
```rust
const LIGHT_HASH = hash("StructureWallLight");
setBatched(LIGHT_HASH, "On", true);
sb(LIGHT_HASH, "On", true);
```
**IC10:** `sb deviceHash logicType r?`
**Note:** This function is useful when a script interfaces with a lot of devices,
as it allows for arbitrary device access without limited to the 6 `dx` pins.
---
#### Set On Device Batched Named
`setBatchedNamed(deviceHash, nameHash, property, value)` / `sbn(...)`
Sets a property on devices matching both device hash and name hash:
```rust
const SENSOR_HASH = hash("StructureGasSensor");
const SENSOR_NAME_HASH = hash("Outdoor Gas Sensor");
setBatchedNamed(SENSOR_HASH, SENSOR_NAME_HASH, "On", true);
sbn(SENSOR_HASH, SENSOR_NAME_HASH, "On", true);
```
**IC10:** `sbn deviceHash nameHash logicType r?`
---
#### Set Slot
`setSlot(device, slotIndex, property, value)` / `ss(...)`
Sets a slot property on a device:
```rust
setSlot(sorter, 0, "Open", true);
ss(sorter, 0, "Open", true);
```
**IC10:** `ss d? slotIndex logicSlotType r?`
---
## Math Functions
All math functions accept numbers, variables, or expressions as arguments.
### Trigonometric Functions
| Function | Description | IC10 |
| ------------- | ---------------------------- | ------- |
| `sin(x)` | Sine of angle in radians | `sin` |
| `cos(x)` | Cosine of angle in radians | `cos` |
| `tan(x)` | Tangent of angle in radians | `tan` |
| `asin(x)` | Arc sine, returns radians | `asin` |
| `acos(x)` | Arc cosine, returns radians | `acos` |
| `atan(x)` | Arc tangent, returns radians | `atan` |
| `atan2(y, x)` | Two-argument arc tangent | `atan2` |
#### Trig Example
```rust
let angle = atan2(y, x);
let sineValue = sin(angle);
```
### Rounding Functions
| Function | Description | IC10 |
| ---------- | ----------------------------- | ------- |
| `ceil(x)` | Round up to nearest integer | `ceil` |
| `floor(x)` | Round down to nearest integer | `floor` |
| `trunc(x)` | Remove decimal portion | `trunc` |
| `abs(x)` | Absolute value | `abs` |
#### Rounding Example
```rust
let rounded = floor(3.7); // 3
let positive = abs(-5); // 5
```
### Other Math Functions
| Function | Description | IC10 |
| ----------- | ----------------------------- | ------ |
| `sqrt(x)` | Square root | `sqrt` |
| `log(x)` | Natural logarithm | `log` |
| `max(a, b)` | Maximum of two values | `max` |
| `min(a, b)` | Minimum of two values | `min` |
| `rand()` | Random number between 0 and 1 | `rand` |
#### Math Example
```rust
let root = sqrt(16); // 4
let bigger = max(a, b);
let randomVal = rand();
```
## See Also
- [Language Reference](language-reference.md) — Complete syntax guide
- [Examples](examples.md) — Real-world code samples

254
docs/examples.md Normal file
View File

@@ -0,0 +1,254 @@
# Examples
Real-world Slang programs demonstrating common patterns.
## Temperature Control
Basic thermostat that controls an air conditioner based on room temperature:
```rust
device ac = "db";
device roomGasSensor = "d0";
const TARGET_TEMP = 22c;
const HYSTERESIS = 1;
loop {
yield();
let temp = roomGasSensor.Temperature;
if (temp > TARGET_TEMP + HYSTERESIS) {
ac.On = true;
} else if (temp < TARGET_TEMP - HYSTERESIS) {
ac.On = false;
}
}
```
**Note:** The IC10 chip is assumed to be inserted in the air conditioner's IC slot.
---
## Two-Axis Solar Panel Tracking
Handles two-axis solar panel tracking based on the sun's position:
```rust
device sensor = "d0";
const H_PANELS = hash("StructureSolarPanelDual");
loop {
setBatched(H_PANELS, "Horizontal", sensor.Horizontal);
setBatched(H_PANELS, "Vertical", sensor.Vertical + 90);
yield();
}
```
**Note:** Assumes the daylight sensor is mounted with its port looking 90
degrees east of the solar panel's data port, an offset can be added on the
horizontal angle if needed.
---
## Day/Night Lighting
Controls grow lights during the day and ambient lights at night:
```rust
device greenhouseSensor = "d0";
const daylightSensor = hash("StructureDaylightSensor");
const growLight = hash("StructureGrowLight");
const wallLight = hash("StructureLightLong");
loop {
yield();
let solarAngle = lb(daylightSensor, "SolarAngle", "Average");
let isDaylight = solarAngle < 90;
sb(growLight, "On", isDaylight);
sb(wallLight, "On", !isDaylight);
}
```
---
## Pressure Relief Valve
Controls a volume pump based on pressure readings for emergency pressure relief:
```rust
device volumePump = "d0";
device pipeSensor = "d1";
const MAX_PRESSURE = 10_000;
const R = 8.314;
loop {
yield();
let pressure = pipeSensor.Pressure;
if (pressure > MAX_PRESSURE) {
// Use PV=nRT to calculate the amount of mols we need to move
// n = PV / RT
let molsToMove = (pressure - MAX_PRESSURE) *
pipeSensor.Volume / (R * pipeSensor.Temperature);
// V = nRT / P
let setting = molsToMove * R * pipeSensor.Temperature / pressure;
volumePump.Setting = setting;
volumePump.On = true;
} else {
volumePump.On = false;
}
}
```
---
## Greenhouse Environment Controller
Complete greenhouse control with pressure, temperature, and lighting:
```rust
device self = "db";
device emergencyRelief = "d0";
device greenhouseSensor = "d1";
device recycleValve = "d2";
const MAX_INTERIOR_PRESSURE = 80;
const MAX_INTERIOR_TEMP = 28c;
const MIN_INTERIOR_PRESSURE = 75;
const MIN_INTERIOR_TEMP = 25c;
const daylightSensor = 1076425094;
const growLight = hash("StructureGrowLight");
const wallLight = hash("StructureLightLong");
const lightRound = hash("StructureLightRound");
let shouldPurge = false;
loop {
yield();
let interiorPress = greenhouseSensor.Pressure;
let interiorTemp = greenhouseSensor.Temperature;
shouldPurge = (
interiorPress > MAX_INTERIOR_PRESSURE ||
interiorTemp > MAX_INTERIOR_TEMP
) || shouldPurge;
emergencyRelief.On = shouldPurge;
recycleValve.On = !shouldPurge;
if (
shouldPurge && (
interiorPress < MIN_INTERIOR_PRESSURE &&
interiorTemp < MIN_INTERIOR_TEMP
)
) {
shouldPurge = false;
}
let solarAngle = lb(daylightSensor, "SolarAngle", "Average");
let isDaylight = solarAngle < 90;
sb(growLight, "On", isDaylight);
sb(wallLight, "On", !isDaylight);
sb(lightRound, "On", !isDaylight);
}
```
---
## Advanced Furnace Pressure Control
Automates multi-furnace pump control based on dial setting for pressure target:
```rust
const FURNACE1 = 1234;
const DIAL1 = 1123;
const ANALYZER1 = 1223;
const FURNACE2 = 1235;
const DIAL2 = 1124;
const ANALYZER2 = 1224;
const FURNACE3 = 1236;
const DIAL3 = 1124;
const ANALYZER3 = 1225;
const R = 8.314;
fn handleFurnace(furnace, dial, analyzer) {
let pressure = furnace.Pressure;
let targetPressure = max(dial.Setting, 0.1) * 1000;
if (abs(targetPressure - pressure) <= 0.1) {
furnace.On = false;
return;
}
let molsToMove = max(furnace.TotalMoles, 1) * (
(targetPressure / pressure) - 1
);
// V = nRT / P
if (molsToMove > 0) {
// Calculate volume required
if (analyzer.Pressure == 0) {
// No more gas to add
furnace.On = false;
return;
}
let volume = molsToMove * R * analyzer.Temperature / analyzer.Pressure;
furnace.On = true;
furnace.SettingOutput = 0;
furnace.SettingInput = volume;
return;
}
// Calculate volume required
let volume = (-molsToMove) * R * furnace.Temperature / pressure;
furnace.On = true;
furnace.SettingInput = 0;
furnace.SettingOutput = volume;
return;
}
loop {
yield();
handleFurnace(FURNACE1, DIAL1, ANALYZER1);
handleFurnace(FURNACE2, DIAL2, ANALYZER2);
handleFurnace(FURNACE3, DIAL3, ANALYZER3);
}
```
**Note:** This example does not handle edge cases such as insufficient gas in
the input network or overfilling the furnace/pipe network.
---
## Common Patterns
### Waiting for a Condition
```rust
fn waitForDeviceToTurnOff(device) {
while (device.On) {
yield();
}
}
```
## See Also
- [Getting Started](getting-started.md) — First steps with Slang
- [Language Reference](language-reference.md) — Complete syntax guide
- [Built-in Functions](builtins.md) — System calls and math functions

99
docs/getting-started.md Normal file
View File

@@ -0,0 +1,99 @@
# Getting Started
<!--toc:start-->
- [Getting Started](#getting-started)
- [Program Structure](#program-structure)
- [The `yield()` Function](#the-yield-function)
- [Your First Program](#your-first-program)
- [Explanation](#explanation)
- [Comments](#comments)
- [See Also](#see-also)
<!--toc:end-->
This guide covers the basics of writing your first Slang program.
## Program Structure
A Slang program consists of top-level declarations and a main loop:
```rust
// Device declarations
device self = "db";
device sensor = "d0";
// Constants
const THRESHOLD = 100;
// Variables
let counter = 0;
// Main program loop
loop {
yield();
// Your logic here
}
```
## The `yield()` Function
IC10 programs run continuously. The `yield()` function pauses execution for one
game tick, preventing the script from consuming excessive resources.
**Important:** You should always include `yield()` in your main loop unless you
know what you're doing.
```rust
loop {
yield(); // Recommended!
// ...
}
```
## Your First Program
Here's a simple program that turns on a light when a gas sensor detects low
pressure:
```rust
device gasSensor = "d0";
device light = "d1";
const LOW_PRESSURE = 50;
loop {
yield();
light.On = gasSensor.Pressure < LOW_PRESSURE;
}
```
### Explanation
1. `device gasSensor = "d0"` — Binds the device at port `d0` to the name
`gasSensor`
2. `device light = "d1"` — Binds the device at port `d1` to the name `light`
3. `const LOW_PRESSURE = 50` — Defines a compile-time constant
4. `loop { ... }` — Creates an infinite loop
5. `yield()` — Pauses for one tick
6. `light.On = gasSensor.Pressure < LOW_PRESSURE` — Reads the pressure and sets
the light state
## Comments
Slang supports single-line comments and documentation comments:
```rust
// This is a regular comment
/// This is a documentation comment
/// It can span multiple lines
fn myFunction() {
// ...
}
```
## See Also
- [Language Reference](language-reference.md) — Complete syntax guide
- [Built-in Functions](builtins.md) — Available system calls
- [Examples](examples.md) — Real-world programs and patterns

339
docs/language-reference.md Normal file
View File

@@ -0,0 +1,339 @@
# Language Reference
<!--toc:start-->
- [Language Reference](#language-reference)
- [Literals](#literals)
- [Numbers](#numbers)
- [Temperature Literals](#temperature-literals)
- [Booleans](#booleans)
- [Strings](#strings)
- [Variables](#variables)
- [`let` - Mutable Variables](#let-mutable-variables)
- [`const` - Constants](#const-constants)
- [Device Declarations](#device-declarations)
- [Device Property Access](#device-property-access)
- [Device Property Assignment](#device-property-assignment)
- [Operators](#operators)
- [Arithmetic Operators](#arithmetic-operators)
- [Comparison Operators](#comparison-operators)
- [Logical Operators](#logical-operators)
- [Ternary Operator](#ternary-operator)
- [Operator Precedence](#operator-precedence)
- [Control Flow](#control-flow)
- [`if` / `else`](#if-and-else)
- [`loop`](#loop)
- [`while`](#while)
- [`break`](#break)
- [`continue`](#continue)
- [Functions](#functions)
- [Declaration](#declaration)
- [Invocation](#invocation)
- [Return Values](#return-values)
- [Parentheses for Grouping](#parentheses-for-grouping)
- [See Also](#see-also)
<!--toc:end-->
Complete syntax reference for the Slang programming language.
## Literals
### Numbers
Numbers can be integers or decimals. Underscores are allowed as visual
separators:
```rust
const integer = 42; // Integer
const decimal = 3.14; // Decimal
const million = 1_000_000; // Integer with separators
const decimalSeparators = 5_000.50; // Decimal with separators
```
### Temperature Literals
Append a unit suffix to specify temperature. Values are automatically converted
to Kelvin at compile time:
| Suffix | Unit | Example |
| ------ | ---------- | ------- |
| `c` | Celsius | `20c` |
| `f` | Fahrenheit | `68f` |
| `k` | Kelvin | `293k` |
```rust
const ROOM_TEMP = 20c; // Converts to 293.15 Kelvin
const FREEZING = 32f; // Converts to 273.15 Kelvin
const ABSOLUTE1 = 0k; // Already in Kelvin
const ABSOLUTE2 = 0; // Assumed to be in Kelvin
```
### Booleans
Booleans compile to integer values `1` and `0` in IC10.
```rust
device ac = "d0";
ac.Mode = false;
ac.On = true;
```
### Strings
Strings use double or single quotes. They are primarily used for prefab and
name hashes.
```rust
const AC_HASH = hash("StructureAirConditioner");
const AC_NAME_HASH = hash("Greenhouse Air Conditioner");
```
## Variables
### `let` Mutable Variables
Declares a variable that can be reassigned:
```rust
let counter = 0;
// ...
counter = counter + 1;
```
### `const` Constants
Declares a compile-time constant. Constants are inlined and do not consume
registers:
```rust
const MAX_PRESSURE = 10_000;
const DOOR_HASH = hash("StructureCompositeDoor");
```
Constants support the `hash()` function for compile-time hash computation.
## Device Declarations
The `device` keyword binds a device port or reference ID to a named variable:
```rust
device self = "db"; // IC housing, or device the IC is plugged into (eg. an AC)
device sensor = "d0"; // Device at port d0
device valve = "d1"; // Device at port d1
device ac1 = "$3FC"; // Device with reference ID $3FC (hexadecimal 1020)
device ac2 = "1020"; // Device with reference ID 1020 (decimal)
```
**Note:** Reference IDs can be found in-game using the Configuration cartridge.
### Device Property Access
Read device properties using dot notation:
```rust
let temp = sensor.Temperature;
let pressure = sensor.Pressure;
let isOn = valve.On;
```
### Device Property Assignment
Write to device properties using dot notation:
```rust
valve.On = true;
valve.Setting = 100;
```
## Operators
### Arithmetic Operators
| Operator | Description | Example |
| -------- | -------------- | -------- |
| `+` | Addition | `a + b` |
| `-` | Subtraction | `a - b` |
| `*` | Multiplication | `a * b` |
| `/` | Division | `a / b` |
| `%` | Modulo | `a % b` |
| `**` | Exponentiation | `a ** b` |
| `-` | Negation | `-a` |
### Comparison Operators
| Operator | Description | Example |
| -------- | --------------------- | -------- |
| `==` | Equal | `a == b` |
| `!=` | Not equal | `a != b` |
| `<` | Less than | `a < b` |
| `>` | Greater than | `a > b` |
| `<=` | Less than or equal | `a <= b` |
| `>=` | Greater than or equal | `a >= b` |
### Logical Operators
| Operator | Description | Example |
| -------- | ----------- | ---------- |
| `&&` | Logical AND | `a && b` |
| `\|\|` | Logical OR | `a \|\| b` |
| `!` | Logical NOT | `!a` |
### Ternary Operator
Conditional expressions using `?` and `:`:
```rust
let result = condition ? valueIfTrue : valueIfFalse;
```
### Operator Precedence
Operators are evaluated in the following order, from highest to lowest
precedence:
| Precedence | Operator(s) | Description |
| ---------- | ----------------- | -------------------------------- |
| 1 | `()` `.` | Grouping, Property access |
| 2 | `!` `-` | Logical NOT, Negation |
| 3 | `**` | Exponentiation |
| 4 | `*` `/` `%` | Multiplication, Division, Modulo |
| 5 | `+` `-` | Addition, Subtraction |
| 6 | `<` `<=` `>` `>=` | Comparison |
| 7 | `==` `!=` | Equality |
| 8 | `&&` | Logical AND |
| 9 | `\|\|` | Logical OR |
| 10 | `?:` | Ternary conditional |
| 11 | `=` | Assignment |
Use parentheses to override precedence:
```rust
let result = (20 + 10) * 5;
```
## Control Flow
### if and else
Conditional branching:
```rust
if (tank.Temperature > 30c) {
ac.On = true;
} else {
ac.On = false;
}
```
### `loop`
Infinite loop that runs until `break`:
```rust
loop {
yield();
// Loop body
if (condition) {
break; // Exit the loop
}
}
```
### `while`
Conditional loop that runs while the condition is true:
```rust
while (counter < 100) {
counter = counter + 1;
yield();
}
```
### `break`
Exits the current loop:
```rust
loop {
yield();
// ...
if (done) {
break;
}
}
```
### `continue`
Skips to the next iteration of the current loop:
```rust
loop {
yield();
if (shouldSkip) {
continue;
}
// This code is skipped when shouldSkip is true
// ...
}
```
## Functions
**Warning:** Functions are currently experimental and may produce suboptimal code.
### Declaration
```rust
fn functionName(arg1, arg2) {
// Function body
return arg1 + arg2;
}
```
### Invocation
```rust
let result = functionName(10, 20);
```
### Return Values
Use `return` to exit a function and optionally return a value:
```rust
fn calculate(x) {
if (x < 0) {
return 0; // Early return
}
return x * 2;
}
fn doWork() {
// No return value
return;
}
```
## Parentheses for Grouping
Use parentheses to control operator precedence:
```rust
let result = (a + b) * c;
let complex = (
temp > 0c &&
stress < 50 &&
(pressure < 10_000 || temp > 20c)
);
```
## See Also
- [Getting Started](getting-started.md) — First steps with Slang
- [Built-in Functions](builtins.md) — System calls and math functions
- [Examples](examples.md) — Real-world code samples

View File

@@ -930,7 +930,7 @@ checksum = "e3a9fe34e3e7a50316060351f37187a3f546bce95496156754b601a5fa71b76e"
[[package]] [[package]]
name = "slang" name = "slang"
version = "0.4.3" version = "0.4.7"
dependencies = [ dependencies = [
"anyhow", "anyhow",
"clap", "clap",

View File

@@ -1,6 +1,6 @@
[package] [package]
name = "slang" name = "slang"
version = "0.4.3" version = "0.4.7"
edition = "2021" edition = "2021"
[workspace] [workspace]

View File

@@ -168,3 +168,28 @@ fn test_const_hash_expr() -> anyhow::Result<()> {
); );
Ok(()) Ok(())
} }
#[test]
fn test_declaration_is_const() -> anyhow::Result<()> {
let compiled = compile! {
debug
r#"
const MAX = 100;
let max = MAX;
"#
};
assert_eq!(
compiled,
indoc! {
"
j main
main:
move r8 100
"
}
);
Ok(())
}

View File

@@ -47,3 +47,4 @@ mod logic_expression;
mod loops; mod loops;
mod math_syscall; mod math_syscall;
mod syscall; mod syscall;
mod tuple_literals;

View File

@@ -0,0 +1,950 @@
#[cfg(test)]
mod test {
use indoc::indoc;
use pretty_assertions::assert_eq;
#[test]
fn test_tuple_literal_declaration() -> anyhow::Result<()> {
let compiled = compile!(
debug
r#"
let (x, y) = (1, 2);
"#
);
assert_eq!(
compiled,
indoc! {
"
j main
main:
move r8 1
move r9 2
"
}
);
Ok(())
}
#[test]
fn test_tuple_literal_declaration_with_underscore() -> anyhow::Result<()> {
let compiled = compile!(
debug
r#"
let (x, _) = (1, 2);
"#
);
assert_eq!(
compiled,
indoc! {
"
j main
main:
move r8 1
"
}
);
Ok(())
}
#[test]
fn test_tuple_literal_assignment() -> anyhow::Result<()> {
let compiled = compile!(
debug
r#"
let x = 0;
let y = 0;
(x, y) = (5, 10);
"#
);
assert_eq!(
compiled,
indoc! {
"
j main
main:
move r8 0
move r9 0
move r8 5
move r9 10
"
}
);
Ok(())
}
#[test]
fn test_tuple_literal_with_variables() -> anyhow::Result<()> {
let compiled = compile!(
debug
r#"
let a = 42;
let b = 99;
let (x, y) = (a, b);
"#
);
assert_eq!(
compiled,
indoc! {
"
j main
main:
move r8 42
move r9 99
move r10 r8
move r11 r9
"
}
);
Ok(())
}
#[test]
fn test_tuple_literal_three_elements() -> anyhow::Result<()> {
let compiled = compile!(
debug
r#"
let (x, y, z) = (1, 2, 3);
"#
);
assert_eq!(
compiled,
indoc! {
"
j main
main:
move r8 1
move r9 2
move r10 3
"
}
);
Ok(())
}
#[test]
fn test_tuple_literal_assignment_with_underscore() -> anyhow::Result<()> {
let compiled = compile!(
debug
r#"
let i = 0;
let x = 123;
(i, _) = (456, 789);
"#
);
assert_eq!(
compiled,
indoc! {
"
j main
main:
move r8 0
move r9 123
move r8 456
"
}
);
Ok(())
}
#[test]
fn test_tuple_return_simple() -> anyhow::Result<()> {
let compiled = compile!(
debug
r#"
fn getPair() {
return (10, 20);
};
let (x, y) = getPair();
"#
);
assert_eq!(
compiled,
indoc! {
"
j main
getPair:
move r15 sp
push ra
push 10
push 20
move r15 1
sub r0 sp 3
get ra db r0
j ra
main:
jal getPair
pop r9
pop r8
move sp r15
"
}
);
Ok(())
}
#[test]
fn test_tuple_return_with_underscore() -> anyhow::Result<()> {
let compiled = compile!(
debug
r#"
fn getPair() {
return (5, 15);
};
let (x, _) = getPair();
"#
);
assert_eq!(
compiled,
indoc! {
"
j main
getPair:
move r15 sp
push ra
push 5
push 15
move r15 1
sub r0 sp 3
get ra db r0
j ra
main:
jal getPair
pop r0
pop r8
move sp r15
"
}
);
Ok(())
}
#[test]
fn test_tuple_return_three_elements() -> anyhow::Result<()> {
let compiled = compile!(
debug
r#"
fn getTriple() {
return (1, 2, 3);
};
let (a, b, c) = getTriple();
"#
);
assert_eq!(
compiled,
indoc! {
"
j main
getTriple:
move r15 sp
push ra
push 1
push 2
push 3
move r15 1
sub r0 sp 4
get ra db r0
j ra
main:
jal getTriple
pop r10
pop r9
pop r8
move sp r15
"
}
);
Ok(())
}
#[test]
fn test_tuple_return_assignment() -> anyhow::Result<()> {
let compiled = compile!(
debug
r#"
fn getPair() {
return (42, 84);
};
let i = 1;
let j = 2;
(i, j) = getPair();
"#
);
assert_eq!(
compiled,
indoc! {
"
j main
getPair:
move r15 sp
push ra
push 42
push 84
move r15 1
sub r0 sp 3
get ra db r0
j ra
main:
move r8 1
move r9 2
jal getPair
pop r9
pop r8
move sp r15
"
}
);
Ok(())
}
#[test]
fn test_tuple_return_mismatch() -> anyhow::Result<()> {
let errors = compile!(
result
r#"
fn doSomething() {
return (1, 2, 3);
};
let (x, y) = doSomething();
"#
);
// Should have exactly one error about tuple size mismatch
assert_eq!(errors.len(), 1);
// Check for the specific TupleSizeMismatch error
match &errors[0] {
crate::Error::TupleSizeMismatch(expected_size, actual_count, _) => {
assert_eq!(*expected_size, 3);
assert_eq!(*actual_count, 2);
}
e => panic!("Expected TupleSizeMismatch error, got: {:?}", e),
}
Ok(())
}
#[test]
fn test_tuple_return_called_by_non_tuple_return() -> anyhow::Result<()> {
let compiled = compile!(
debug
r#"
fn doSomething() {
return (1, 2);
};
fn doSomethingElse() {
let (x, y) = doSomething();
return y;
};
let returnedValue = doSomethingElse();
"#
);
assert_eq!(
compiled,
indoc! {
"
j main
doSomething:
move r15 sp
push ra
push 1
push 2
move r15 1
sub r0 sp 3
get ra db r0
j ra
doSomethingElse:
push ra
jal doSomething
pop r9
pop r8
move sp r15
move r15 r9
j __internal_L2
__internal_L2:
pop ra
j ra
main:
jal doSomethingElse
move r8 r15
"
}
);
Ok(())
}
#[test]
fn test_non_tuple_return_called_by_tuple_return() -> anyhow::Result<()> {
let compiled = compile!(
debug
r#"
fn getValue() {
return 42;
};
fn getTuple() {
let x = getValue();
return (x, x);
};
let (a, b) = getTuple();
"#
);
assert_eq!(
compiled,
indoc! {
"
j main
getValue:
push ra
move r15 42
j __internal_L1
__internal_L1:
pop ra
j ra
getTuple:
move r15 sp
push ra
jal getValue
move r8 r15
push r8
push r8
move r15 1
sub r0 sp 3
get ra db r0
j ra
main:
jal getTuple
pop r9
pop r8
move sp r15
"
}
);
Ok(())
}
#[test]
fn test_tuple_literal_size_mismatch() -> anyhow::Result<()> {
let errors = compile!(
result
r#"
let (x, y) = (1, 2, 3);
"#
);
// Should have exactly one error about tuple size mismatch
assert_eq!(errors.len(), 1);
assert!(matches!(
errors[0],
crate::Error::TupleSizeMismatch(_, _, _)
));
Ok(())
}
#[test]
fn test_multiple_tuple_returns_in_function() -> anyhow::Result<()> {
let compiled = compile!(
debug
r#"
fn getValue(x) {
if (x) {
return (1, 2);
} else {
return (3, 4);
}
};
let (a, b) = getValue(1);
"#
);
assert_eq!(
compiled,
indoc! {
"
j main
getValue:
pop r8
move r15 sp
push ra
beqz r8 __internal_L3
push 1
push 2
move r15 0
sub r0 sp 3
get ra db r0
j ra
sub sp sp 2
j __internal_L2
__internal_L3:
push 3
push 4
move r15 0
sub r0 sp 3
get ra db r0
j ra
sub sp sp 2
__internal_L2:
main:
push 1
jal getValue
pop r9
pop r8
move sp r15
"
},
);
Ok(())
}
#[test]
fn test_tuple_return_with_expression() -> anyhow::Result<()> {
let compiled = compile!(
debug
r#"
fn add(x, y) {
return (x, y);
};
let (a, b) = add(5, 10);
"#
);
assert_eq!(
compiled,
indoc! {
"
j main
add:
pop r8
pop r9
move r15 sp
push ra
push r9
push r8
move r15 1
sub r0 sp 3
get ra db r0
j ra
main:
push 5
push 10
jal add
pop r9
pop r8
move sp r15
"
}
);
Ok(())
}
#[test]
fn test_nested_function_tuple_calls() -> anyhow::Result<()> {
let compiled = compile!(
debug
r#"
fn inner() {
return (1, 2);
};
fn outer() {
let (x, y) = inner();
return (y, x);
};
let (a, b) = outer();
"#
);
assert_eq!(
compiled,
indoc! {
"
j main
inner:
move r15 sp
push ra
push 1
push 2
move r15 1
sub r0 sp 3
get ra db r0
j ra
outer:
move r15 sp
push ra
jal inner
pop r9
pop r8
move sp r15
push r9
push r8
move r15 1
sub r0 sp 3
get ra db r0
j ra
main:
jal outer
pop r9
pop r8
move sp r15
"
}
);
Ok(())
}
#[test]
fn test_tuple_literal_with_constant_expressions() -> anyhow::Result<()> {
let compiled = compile!(
debug
r#"
let (a, b) = (1 + 2, 3 * 4);
"#
);
assert_eq!(
compiled,
indoc! {
"
j main
main:
move r8 3
move r9 12
"
}
);
Ok(())
}
#[test]
fn test_tuple_literal_with_variable_expressions() -> anyhow::Result<()> {
let compiled = compile!(
debug
r#"
let x = 5;
let y = 10;
let (a, b) = (x + 1, y * 2);
"#
);
assert_eq!(
compiled,
indoc! {
"
j main
main:
move r8 5
move r9 10
add r1 r8 1
move r10 r1
mul r2 r9 2
move r11 r2
"
}
);
Ok(())
}
#[test]
fn test_tuple_assignment_with_expressions() -> anyhow::Result<()> {
let compiled = compile!(
debug
r#"
let a = 0;
let b = 0;
let x = 5;
(a, b) = (x + 1, x * 2);
"#
);
assert_eq!(
compiled,
indoc! {
"
j main
main:
move r8 0
move r9 0
move r10 5
add r1 r10 1
move r8 r1
mul r2 r10 2
move r9 r2
"
}
);
Ok(())
}
#[test]
fn test_tuple_literal_with_function_calls() -> anyhow::Result<()> {
let compiled = compile!(
debug
r#"
fn getValue() { return 42; };
fn getOther() { return 99; };
let (a, b) = (getValue(), getOther());
"#
);
assert_eq!(
compiled,
indoc! {
"
j main
getValue:
push ra
move r15 42
j __internal_L1
__internal_L1:
pop ra
j ra
getOther:
push ra
move r15 99
j __internal_L2
__internal_L2:
pop ra
j ra
main:
push r8
jal getValue
pop r8
move r1 r15
move r8 r1
push r8
push r9
jal getOther
pop r9
pop r8
move r2 r15
move r9 r2
"
}
);
Ok(())
}
#[test]
fn test_tuple_with_logical_expressions() -> anyhow::Result<()> {
let compiled = compile!(
debug
r#"
let x = 1;
let y = 0;
let (a, b) = (x && y, x || y);
"#
);
assert_eq!(
compiled,
indoc! {
"
j main
main:
move r8 1
move r9 0
and r1 r8 r9
move r10 r1
or r2 r8 r9
move r11 r2
"
}
);
Ok(())
}
#[test]
fn test_tuple_with_comparison_expressions() -> anyhow::Result<()> {
let compiled = compile!(
debug
r#"
let x = 5;
let y = 10;
let (a, b) = (x > y, x < y);
"#
);
assert_eq!(
compiled,
indoc! {
"
j main
main:
move r8 5
move r9 10
sgt r1 r8 r9
move r10 r1
slt r2 r8 r9
move r11 r2
"
}
);
Ok(())
}
#[test]
fn test_tuple_with_device_property_access() -> anyhow::Result<()> {
let compiled = compile!(
debug
r#"
device sensor = "d0";
device display = "d1";
let (temp, pressure) = (sensor.Temperature, sensor.Pressure);
"#
);
assert_eq!(
compiled,
indoc! {
"
j main
main:
l r1 d0 Temperature
move r8 r1
l r2 d0 Pressure
move r9 r2
"
}
);
Ok(())
}
#[test]
fn test_tuple_with_device_property_and_function_call() -> anyhow::Result<()> {
let compiled = compile!(
debug
r#"
device self = "db";
fn getY() {
return 42;
}
let (x, y) = (self.Setting, getY());
"#
);
assert_eq!(
compiled,
indoc! {
"
j main
getY:
push ra
move r15 42
j __internal_L1
__internal_L1:
pop ra
j ra
main:
l r1 db Setting
move r8 r1
push r8
push r9
jal getY
pop r9
pop r8
move r2 r15
move r9 r2
"
}
);
Ok(())
}
#[test]
fn test_tuple_with_function_call_expressions() -> anyhow::Result<()> {
let compiled = compile!(
debug
r#"
fn getValue() { return 10; }
fn getOther() { return 20; }
let (a, b) = (getValue() + 5, getOther() * 2);
"#
);
assert_eq!(
compiled,
indoc! {
"
j main
getValue:
push ra
move r15 10
j __internal_L1
__internal_L1:
pop ra
j ra
getOther:
push ra
move r15 20
j __internal_L2
__internal_L2:
pop ra
j ra
main:
push r8
jal getValue
pop r8
move r1 r15
add r2 r1 5
move r8 r2
push r8
push r9
jal getOther
pop r9
pop r8
move r3 r15
mul r4 r3 2
move r9 r4
"
}
);
Ok(())
}
}

View File

@@ -9,7 +9,8 @@ use parser::{
AssignmentExpression, BinaryExpression, BlockExpression, ConstDeclarationExpression, AssignmentExpression, BinaryExpression, BlockExpression, ConstDeclarationExpression,
DeviceDeclarationExpression, Expression, FunctionExpression, IfExpression, DeviceDeclarationExpression, Expression, FunctionExpression, IfExpression,
InvocationExpression, Literal, LiteralOr, LiteralOrVariable, LogicalExpression, InvocationExpression, Literal, LiteralOr, LiteralOrVariable, LogicalExpression,
LoopExpression, MemberAccessExpression, Spanned, TernaryExpression, WhileExpression, LoopExpression, MemberAccessExpression, Spanned, TernaryExpression,
TupleAssignmentExpression, TupleDeclarationExpression, WhileExpression,
}, },
}; };
use rust_decimal::Decimal; use rust_decimal::Decimal;
@@ -63,6 +64,9 @@ pub enum Error<'a> {
#[error("Attempted to re-assign a value to a device const `{0}`")] #[error("Attempted to re-assign a value to a device const `{0}`")]
DeviceAssignment(Cow<'a, str>, Span), DeviceAssignment(Cow<'a, str>, Span),
#[error("Expected a {0}-tuple, but you're trying to destructure into {1} variables")]
TupleSizeMismatch(usize, usize, Span),
#[error("{0}")] #[error("{0}")]
Unknown(String, Option<Span>), Unknown(String, Option<Span>),
} }
@@ -84,7 +88,8 @@ impl<'a> From<Error<'a>> for lsp_types::Diagnostic {
| InvalidDevice(_, span) | InvalidDevice(_, span)
| ConstAssignment(_, span) | ConstAssignment(_, span)
| DeviceAssignment(_, span) | DeviceAssignment(_, span)
| AgrumentMismatch(_, span) => Diagnostic { | AgrumentMismatch(_, span)
| TupleSizeMismatch(_, _, span) => Diagnostic {
range: span.into(), range: span.into(),
message: value.to_string(), message: value.to_string(),
severity: Some(DiagnosticSeverity::ERROR), severity: Some(DiagnosticSeverity::ERROR),
@@ -142,6 +147,8 @@ pub struct Compiler<'a> {
pub parser: ASTParser<'a>, pub parser: ASTParser<'a>,
function_locations: HashMap<Cow<'a, str>, usize>, function_locations: HashMap<Cow<'a, str>, usize>,
function_metadata: HashMap<Cow<'a, str>, Vec<Cow<'a, str>>>, function_metadata: HashMap<Cow<'a, str>, Vec<Cow<'a, str>>>,
function_tuple_return_sizes: HashMap<Cow<'a, str>, usize>, // Track tuple return sizes
current_function_name: Option<Cow<'a, str>>, // Track the function currently being compiled
devices: HashMap<Cow<'a, str>, Cow<'a, str>>, devices: HashMap<Cow<'a, str>, Cow<'a, str>>,
// This holds the IL code which will be used in the // This holds the IL code which will be used in the
@@ -155,6 +162,8 @@ pub struct Compiler<'a> {
label_counter: usize, label_counter: usize,
loop_stack: Vec<(Cow<'a, str>, Cow<'a, str>)>, // Stores (start_label, end_label) loop_stack: Vec<(Cow<'a, str>, Cow<'a, str>)>, // Stores (start_label, end_label)
current_return_label: Option<Cow<'a, str>>, current_return_label: Option<Cow<'a, str>>,
current_return_is_tuple: bool, // Track if the current function returns a tuple
current_function_sp_saved: bool, // Track if we've emitted the SP save for the current function
/// stores (IC10 `line_num`, `Vec<Span>`) /// stores (IC10 `line_num`, `Vec<Span>`)
pub source_map: HashMap<usize, Vec<Span>>, pub source_map: HashMap<usize, Vec<Span>>,
/// Accumulative errors from the compilation process /// Accumulative errors from the compilation process
@@ -176,6 +185,10 @@ impl<'a> Compiler<'a> {
label_counter: 0, label_counter: 0,
loop_stack: Vec::new(), loop_stack: Vec::new(),
current_return_label: None, current_return_label: None,
current_return_is_tuple: false,
current_function_sp_saved: false,
current_function_name: None,
function_tuple_return_sizes: HashMap::new(),
source_map: HashMap::new(), source_map: HashMap::new(),
errors: Vec::new(), errors: Vec::new(),
} }
@@ -465,6 +478,14 @@ impl<'a> Compiler<'a> {
temp_name: Some(result_name), temp_name: Some(result_name),
})) }))
} }
Expression::TupleDeclaration(tuple_decl) => {
self.expression_tuple_declaration(tuple_decl.node, scope)?;
Ok(None)
}
Expression::TupleAssignment(tuple_assign) => {
self.expression_tuple_assignment(tuple_assign.node, scope)?;
Ok(None)
}
_ => Err(Error::Unknown( _ => Err(Error::Unknown(
format!( format!(
"Expression type not yet supported in general expression context: {:?}", "Expression type not yet supported in general expression context: {:?}",
@@ -714,7 +735,12 @@ impl<'a> Compiler<'a> {
Operand::Register(VariableScope::TEMP_STACK_REGISTER) Operand::Register(VariableScope::TEMP_STACK_REGISTER)
} }
VariableLocation::Constant(_) | VariableLocation::Device(_) => unreachable!(), VariableLocation::Constant(Literal::Number(num)) => Operand::Number(num.into()),
VariableLocation::Constant(Literal::Boolean(b)) => {
Operand::Number(Number::from(b).into())
}
VariableLocation::Device(_)
| VariableLocation::Constant(Literal::String(_)) => unreachable!(),
}; };
self.emit_variable_assignment(&var_loc, src)?; self.emit_variable_assignment(&var_loc, src)?;
(var_loc, None) (var_loc, None)
@@ -927,6 +953,504 @@ impl<'a> Compiler<'a> {
Ok(()) Ok(())
} }
fn expression_function_invocation_with_invocation(
&mut self,
invoke_expr: &InvocationExpression<'a>,
parent_scope: &mut VariableScope<'a, '_>,
backup_registers: bool,
) -> Result<(), Error<'a>> {
let InvocationExpression { name, arguments } = invoke_expr;
if !self.function_locations.contains_key(name.node.as_ref()) {
self.errors
.push(Error::UnknownIdentifier(name.node.clone(), name.span));
return Ok(());
}
let Some(args) = self.function_metadata.get(name.node.as_ref()) else {
return Err(Error::UnknownIdentifier(name.node.clone(), name.span));
};
if args.len() != arguments.len() {
self.errors
.push(Error::AgrumentMismatch(name.node.clone(), name.span));
return Ok(());
}
let mut stack = VariableScope::scoped(parent_scope);
// Get the list of active registers (may or may not backup)
let active_registers = stack.registers();
// backup all used registers to the stack (unless this is for tuple return handling)
if backup_registers {
for register in &active_registers {
stack.add_variable(
Cow::from(format!("temp_{register}")),
LocationRequest::Stack,
None,
)?;
self.write_instruction(
Instruction::Push(Operand::Register(*register)),
Some(name.span),
)?;
}
}
for arg in arguments {
match &arg.node {
Expression::Literal(spanned_lit) => match &spanned_lit.node {
Literal::Number(num) => {
self.write_instruction(
Instruction::Push(Operand::Number((*num).into())),
Some(spanned_lit.span),
)?;
}
Literal::Boolean(b) => {
self.write_instruction(
Instruction::Push(Operand::Number(Number::from(*b).into())),
Some(spanned_lit.span),
)?;
}
_ => {}
},
Expression::Variable(var_name) => {
let loc = match stack.get_location_of(&var_name.node, Some(var_name.span)) {
Ok(l) => l,
Err(_) => {
self.errors.push(Error::UnknownIdentifier(
var_name.node.clone(),
var_name.span,
));
VariableLocation::Temporary(0)
}
};
match loc {
VariableLocation::Persistant(reg) | VariableLocation::Temporary(reg) => {
self.write_instruction(
Instruction::Push(Operand::Register(reg)),
Some(var_name.span),
)?;
}
VariableLocation::Constant(lit) => {
self.write_instruction(
Instruction::Push(extract_literal(lit, false)?),
Some(var_name.span),
)?;
}
VariableLocation::Stack(stack_offset) => {
self.write_instruction(
Instruction::Sub(
Operand::Register(VariableScope::TEMP_STACK_REGISTER),
Operand::StackPointer,
Operand::Number(stack_offset.into()),
),
Some(var_name.span),
)?;
self.write_instruction(
Instruction::Get(
Operand::Register(VariableScope::TEMP_STACK_REGISTER),
Operand::Device(Cow::from("db")),
Operand::Register(VariableScope::TEMP_STACK_REGISTER),
),
Some(var_name.span),
)?;
self.write_instruction(
Instruction::Push(Operand::Register(
VariableScope::TEMP_STACK_REGISTER,
)),
Some(var_name.span),
)?;
}
VariableLocation::Device(_) => {
self.errors.push(Error::Unknown(
"Device references not supported in function arguments".into(),
Some(var_name.span),
));
}
}
}
_ => {
self.errors.push(Error::Unknown(
"Only literals and variables supported in function arguments".into(),
Some(arg.span),
));
}
}
}
let Some(_location) = self.function_locations.get(&name.node) else {
self.errors
.push(Error::UnknownIdentifier(name.node.clone(), name.span));
return Ok(());
};
self.write_instruction(
Instruction::JumpAndLink(Operand::Label(name.node.clone())),
Some(name.span),
)?;
// pop all registers back (if they were backed up)
if backup_registers {
for register in active_registers.iter().rev() {
self.write_instruction(
Instruction::Pop(Operand::Register(*register)),
Some(name.span),
)?;
}
}
Ok(())
}
fn expression_tuple_declaration(
&mut self,
tuple_decl: TupleDeclarationExpression<'a>,
scope: &mut VariableScope<'a, '_>,
) -> Result<(), Error<'a>> {
let TupleDeclarationExpression { names, value } = tuple_decl;
// Compile the right-hand side expression
// For function calls returning tuples:
// r15 = pointer to beginning of tuple on stack
// r14, r13, ... contain the tuple elements, or they're on the stack
match value.node {
Expression::Invocation(invoke_expr) => {
// Execute the function call
// Tuple values are on the stack, sp points after the last pushed value
// Pop them in reverse order (from end to beginning)
// We don't need to backup registers for tuple returns
self.expression_function_invocation_with_invocation(&invoke_expr, scope, false)?;
// Validate tuple return size matches the declaration
let func_name = &invoke_expr.node.name.node;
if let Some(&expected_size) = self.function_tuple_return_sizes.get(func_name) {
if names.len() != expected_size {
self.errors.push(Error::TupleSizeMismatch(
expected_size,
names.len(),
value.span,
));
}
}
// First pass: allocate variables in order
let mut var_locations = Vec::new();
for name_spanned in names.iter() {
// Skip underscores
if name_spanned.node.as_ref() == "_" {
var_locations.push(None);
continue;
}
// Add variable to scope
let var_location = scope.add_variable(
name_spanned.node.clone(),
LocationRequest::Persist,
Some(name_spanned.span),
)?;
var_locations.push(Some(var_location));
}
// Second pass: pop in reverse order through the list (since stack is LIFO)
// var_locations[0] is the first element (bottom of stack)
// var_locations[n-1] is the last element (top of stack)
// We pop from the top, so we iterate in reverse through var_locations
for (idx, var_loc_opt) in var_locations.iter().enumerate().rev() {
match var_loc_opt {
Some(var_location) => {
let var_reg = self.resolve_register(&var_location)?;
// Pop from stack into the variable's register
self.write_instruction(
Instruction::Pop(Operand::Register(var_reg)),
Some(names[idx].span),
)?;
}
None => {
// Underscore: pop into temp register to discard
self.write_instruction(
Instruction::Pop(Operand::Register(
VariableScope::TEMP_STACK_REGISTER,
)),
Some(names[idx].span),
)?;
}
}
}
// Restore stack pointer to value saved at function entry
self.write_instruction(
Instruction::Move(
Operand::StackPointer,
Operand::Register(VariableScope::RETURN_REGISTER),
),
Some(value.span),
)?;
}
Expression::Tuple(tuple_expr) => {
// Direct tuple literal: (value1, value2, ...)
let tuple_elements = tuple_expr.node;
// Validate tuple size matches names
if tuple_elements.len() != names.len() {
return Err(Error::TupleSizeMismatch(
names.len(),
tuple_elements.len(),
value.span,
));
}
// Compile each element and assign to corresponding variable
for (name_spanned, element) in names.into_iter().zip(tuple_elements.into_iter()) {
// Skip underscores
if name_spanned.node.as_ref() == "_" {
continue;
}
// Add variable to scope
let var_location = scope.add_variable(
name_spanned.node.clone(),
LocationRequest::Persist,
Some(name_spanned.span),
)?;
// Compile the element expression - use compile_operand to handle all expression types
let (value_operand, cleanup) = self.compile_operand(element, scope)?;
self.emit_variable_assignment(&var_location, value_operand)?;
// Clean up any temporary registers used for complex expressions
if let Some(temp_name) = cleanup {
scope.free_temp(temp_name, None)?;
}
}
}
_ => {
return Err(Error::Unknown(
"Tuple declaration only supports function invocations or tuple literals as RHS"
.into(),
Some(value.span),
));
}
}
Ok(())
}
fn expression_tuple_assignment(
&mut self,
tuple_assign: TupleAssignmentExpression<'a>,
scope: &mut VariableScope<'a, '_>,
) -> Result<(), Error<'a>> {
let TupleAssignmentExpression { names, value } = tuple_assign;
// Similar to tuple declaration, but variables must already exist
match value.node {
Expression::Invocation(invoke_expr) => {
// Execute the function call
// Tuple values are on the stack, sp points after the last pushed value
// Pop them in reverse order (from end to beginning)
// We don't need to backup registers for tuple returns
self.expression_function_invocation_with_invocation(&invoke_expr, scope, false)?;
// Validate tuple return size matches the assignment
let func_name = &invoke_expr.node.name.node;
if let Some(&expected_size) = self.function_tuple_return_sizes.get(func_name) {
if names.len() != expected_size {
self.errors.push(Error::TupleSizeMismatch(
expected_size,
names.len(),
value.span,
));
}
}
// First pass: look up variable locations
let mut var_locs = Vec::new();
for name_spanned in names.iter() {
// Skip underscores
if name_spanned.node.as_ref() == "_" {
var_locs.push(None);
continue;
}
// Get the existing variable location
let var_location =
match scope.get_location_of(&name_spanned.node, Some(name_spanned.span)) {
Ok(l) => l,
Err(_) => {
self.errors.push(Error::UnknownIdentifier(
name_spanned.node.clone(),
name_spanned.span,
));
VariableLocation::Temporary(0)
}
};
var_locs.push(Some(var_location));
}
// Second pass: pop in reverse order and assign
for (idx, var_loc_opt) in var_locs.iter().enumerate().rev() {
if let Some(var_location) = var_loc_opt {
// Pop from stack and assign to variable
match var_location {
VariableLocation::Temporary(reg)
| VariableLocation::Persistant(reg) => {
// Pop directly into the variable's register
self.write_instruction(
Instruction::Pop(Operand::Register(*reg)),
Some(names[idx].span),
)?;
}
VariableLocation::Stack(offset) => {
// Pop into temp register, then write to variable stack
self.write_instruction(
Instruction::Pop(Operand::Register(
VariableScope::TEMP_STACK_REGISTER,
)),
Some(names[idx].span),
)?;
// Write to variable stack location
self.write_instruction(
Instruction::Sub(
Operand::Register(0),
Operand::StackPointer,
Operand::Number((*offset).into()),
),
Some(names[idx].span),
)?;
self.write_instruction(
Instruction::Put(
Operand::Device(Cow::from("db")),
Operand::Register(0),
Operand::Register(VariableScope::TEMP_STACK_REGISTER),
),
Some(names[idx].span),
)?;
}
VariableLocation::Constant(_) => {
return Err(Error::ConstAssignment(
names[idx].node.clone(),
names[idx].span,
));
}
VariableLocation::Device(_) => {
return Err(Error::DeviceAssignment(
names[idx].node.clone(),
names[idx].span,
));
}
}
}
}
// Restore stack pointer to value saved at function entry
self.write_instruction(
Instruction::Move(
Operand::StackPointer,
Operand::Register(VariableScope::RETURN_REGISTER),
),
Some(value.span),
)?;
}
Expression::Tuple(tuple_expr) => {
// Direct tuple literal: (value1, value2, ...)
let tuple_elements = tuple_expr.node;
// Validate tuple size matches names
if tuple_elements.len() != names.len() {
return Err(Error::TupleSizeMismatch(
tuple_elements.len(),
names.len(),
value.span,
));
}
// Compile each element and assign to corresponding variable
for (name_spanned, element) in names.into_iter().zip(tuple_elements.into_iter()) {
// Skip underscores
if name_spanned.node.as_ref() == "_" {
continue;
}
// Get the existing variable location
let var_location =
match scope.get_location_of(&name_spanned.node, Some(name_spanned.span)) {
Ok(l) => l,
Err(_) => {
self.errors.push(Error::UnknownIdentifier(
name_spanned.node.clone(),
name_spanned.span,
));
VariableLocation::Temporary(0)
}
};
// Compile the element expression - use compile_operand to handle all expression types
let (value_operand, cleanup) = self.compile_operand(element, scope)?;
// Assign the compiled value to the target variable location
match &var_location {
VariableLocation::Temporary(reg) | VariableLocation::Persistant(reg) => {
self.write_instruction(
Instruction::Move(Operand::Register(*reg), value_operand),
Some(name_spanned.span),
)?;
}
VariableLocation::Stack(offset) => {
self.write_instruction(
Instruction::Sub(
Operand::Register(VariableScope::TEMP_STACK_REGISTER),
Operand::StackPointer,
Operand::Number((*offset).into()),
),
Some(name_spanned.span),
)?;
self.write_instruction(
Instruction::Put(
Operand::Device(Cow::from("db")),
Operand::Register(VariableScope::TEMP_STACK_REGISTER),
value_operand,
),
Some(name_spanned.span),
)?;
}
VariableLocation::Constant(_) => {
return Err(Error::ConstAssignment(
name_spanned.node.clone(),
name_spanned.span,
));
}
VariableLocation::Device(_) => {
return Err(Error::DeviceAssignment(
name_spanned.node.clone(),
name_spanned.span,
));
}
}
// Clean up any temporary registers used for complex expressions
if let Some(temp_name) = cleanup {
scope.free_temp(temp_name, None)?;
}
}
}
_ => {
return Err(Error::Unknown(
"Tuple assignment only supports function invocations or tuple literals as RHS"
.into(),
Some(value.span),
));
}
}
Ok(())
}
fn expression_function_invocation( fn expression_function_invocation(
&mut self, &mut self,
invoke_expr: Spanned<InvocationExpression<'a>>, invoke_expr: Spanned<InvocationExpression<'a>>,
@@ -1941,6 +2465,169 @@ impl<'a> Compiler<'a> {
} }
} }
} }
Expression::Tuple(tuple_expr) => {
let span = expr.span;
let tuple_elements = &tuple_expr.node;
// Record the stack offset where the tuple will start
let tuple_start_offset = scope.stack_offset();
// First pass: Add temporary variables to scope for each tuple element
// This updates the scope's stack_offset so we can calculate ra position later
let mut temp_names = Vec::new();
for (i, _element) in tuple_elements.iter().enumerate() {
let temp_name = format!("__tuple_ret_{}", i);
scope.add_variable(
temp_name.clone().into(),
LocationRequest::Stack,
Some(span),
)?;
temp_names.push(temp_name);
}
// Second pass: Push the actual values onto the stack
for element in tuple_elements.iter() {
match &element.node {
Expression::Literal(lit) => {
let value_operand = extract_literal(lit.node.clone(), false)?;
self.write_instruction(
Instruction::Push(value_operand),
Some(span),
)?;
}
Expression::Variable(var) => {
let var_loc = match scope.get_location_of(&var.node, Some(var.span))
{
Ok(l) => l,
Err(_) => {
self.errors.push(Error::UnknownIdentifier(
var.node.clone(),
var.span,
));
VariableLocation::Temporary(0)
}
};
match &var_loc {
VariableLocation::Temporary(reg)
| VariableLocation::Persistant(reg) => {
self.write_instruction(
Instruction::Push(Operand::Register(*reg)),
Some(span),
)?;
}
VariableLocation::Constant(lit) => {
let value_operand = extract_literal(lit.clone(), false)?;
self.write_instruction(
Instruction::Push(value_operand),
Some(span),
)?;
}
VariableLocation::Stack(offset) => {
self.write_instruction(
Instruction::Sub(
Operand::Register(
VariableScope::TEMP_STACK_REGISTER,
),
Operand::StackPointer,
Operand::Number((*offset).into()),
),
Some(span),
)?;
self.write_instruction(
Instruction::Get(
Operand::Register(
VariableScope::TEMP_STACK_REGISTER,
),
Operand::Device(Cow::from("db")),
Operand::Register(
VariableScope::TEMP_STACK_REGISTER,
),
),
Some(span),
)?;
self.write_instruction(
Instruction::Push(Operand::Register(
VariableScope::TEMP_STACK_REGISTER,
)),
Some(span),
)?;
}
VariableLocation::Device(_) => {
return Err(Error::Unknown(
"You can not return a device from a function.".into(),
Some(var.span),
));
}
}
}
_ => {
// For complex expressions, just push 0 for now
self.write_instruction(
Instruction::Push(Operand::Number(
Number::Integer(0, Unit::None).into(),
)),
Some(span),
)?;
}
}
}
// Store the pointer to the tuple (stack offset) in r15
self.write_instruction(
Instruction::Move(
Operand::Register(VariableScope::RETURN_REGISTER),
Operand::Number(tuple_start_offset.into()),
),
Some(span),
)?;
// For tuple returns, ra is buried under the tuple values on the stack.
// Stack layout: [ra, val0, val1, val2, ...]
// Instead of popping and pushing, use Get to read ra from its stack position
// while leaving the tuple values in place.
// Calculate offset to ra from current stack position
// ra is at tuple_start_offset - 1, so offset = (current - tuple_start) + 1
let current_offset = scope.stack_offset();
let ra_offset_from_current = (current_offset - tuple_start_offset + 1) as i32;
// Use a temp register to read ra from the stack
if ra_offset_from_current > 0 {
self.write_instruction(
Instruction::Sub(
Operand::Register(VariableScope::TEMP_STACK_REGISTER),
Operand::StackPointer,
Operand::Number(ra_offset_from_current.into()),
),
Some(span),
)?;
self.write_instruction(
Instruction::Get(
Operand::ReturnAddress,
Operand::Device(Cow::from("db")),
Operand::Register(VariableScope::TEMP_STACK_REGISTER),
),
Some(span),
)?;
}
// Jump back to caller
self.write_instruction(Instruction::Jump(Operand::ReturnAddress), Some(span))?;
// Mark that we had a tuple return so the function declaration can skip return label cleanup
self.current_return_is_tuple = true;
// Record the tuple return size for validation at call sites
if let Some(func_name) = &self.current_function_name {
self.function_tuple_return_sizes
.insert(func_name.clone(), tuple_elements.len());
}
// Early return to skip the normal return label processing
return Ok(VariableLocation::Persistant(VariableScope::RETURN_REGISTER));
}
_ => { _ => {
return Err(Error::Unknown( return Err(Error::Unknown(
format!("Unsupported `return` statement: {:?}", expr), format!("Unsupported `return` statement: {:?}", expr),
@@ -2569,6 +3256,78 @@ impl<'a> Compiler<'a> {
} }
} }
/// Check if a function body contains any tuple returns
fn has_tuple_return(body: &BlockExpression) -> bool {
for expr in &body.0 {
match &expr.node {
Expression::Return(Some(ret_expr)) => {
if let Expression::Tuple(_) = &ret_expr.node {
return true;
}
}
Expression::If(if_expr) => {
// Check the then block
if Self::has_tuple_return(&if_expr.node.body.node) {
return true;
}
// Check the else branch if it exists
if let Some(else_branch) = &if_expr.node.else_branch {
match &else_branch.node {
Expression::Block(block) => {
if Self::has_tuple_return(block) {
return true;
}
}
Expression::If(_) => {
// Handle else-if chains
if Self::has_tuple_return_in_expr(else_branch) {
return true;
}
}
_ => {}
}
}
}
Expression::While(while_expr) => {
if Self::has_tuple_return(&while_expr.node.body) {
return true;
}
}
Expression::Loop(loop_expr) => {
if Self::has_tuple_return(&loop_expr.node.body.node) {
return true;
}
}
Expression::Block(block) => {
if Self::has_tuple_return(block) {
return true;
}
}
_ => {}
}
}
false
}
/// Helper to check for tuple returns in any expression
fn has_tuple_return_in_expr(expr: &Spanned<Expression>) -> bool {
match &expr.node {
Expression::Block(block) => Self::has_tuple_return(block),
Expression::If(if_expr) => {
if Self::has_tuple_return(&if_expr.node.body.node) {
return true;
}
if let Some(else_branch) = &if_expr.node.else_branch {
return Self::has_tuple_return_in_expr(else_branch);
}
false
}
Expression::While(while_expr) => Self::has_tuple_return(&while_expr.node.body),
Expression::Loop(loop_expr) => Self::has_tuple_return(&loop_expr.node.body.node),
_ => false,
}
}
/// Compile a function declaration. /// Compile a function declaration.
/// Calees are responsible for backing up any registers they wish to use. /// Calees are responsible for backing up any registers they wish to use.
fn expression_function( fn expression_function(
@@ -2596,6 +3355,9 @@ impl<'a> Compiler<'a> {
arguments.iter().map(|a| a.node.clone()).collect(), arguments.iter().map(|a| a.node.clone()).collect(),
); );
// Set the current function being compiled
self.current_function_name = Some(name.node.clone());
// Declare the function as a line identifier // Declare the function as a line identifier
self.write_instruction(Instruction::LabelDef(name.node.clone()), Some(span))?; self.write_instruction(Instruction::LabelDef(name.node.clone()), Some(span))?;
@@ -2657,6 +3419,18 @@ impl<'a> Compiler<'a> {
)?; )?;
} }
// If this function has tuple returns, save the SP to r15 before pushing ra
if Self::has_tuple_return(&body) {
self.write_instruction(
Instruction::Move(
Operand::Register(VariableScope::RETURN_REGISTER),
Operand::StackPointer,
),
Some(span),
)?;
self.current_function_sp_saved = true;
}
self.write_instruction(Instruction::Push(Operand::ReturnAddress), Some(span))?; self.write_instruction(Instruction::Push(Operand::ReturnAddress), Some(span))?;
let return_label = self.next_label_name(); let return_label = self.next_label_name();
@@ -2710,54 +3484,63 @@ impl<'a> Compiler<'a> {
self.current_return_label = prev_return_label; self.current_return_label = prev_return_label;
self.write_instruction(Instruction::LabelDef(return_label.clone()), Some(span))?; // Only write the return label if this function doesn't have a tuple return
// (tuple returns handle their own pop ra and return)
if !self.current_return_is_tuple {
self.write_instruction(Instruction::LabelDef(return_label.clone()), Some(span))?;
if ra_stack_offset == 1 { if ra_stack_offset == 1 {
self.write_instruction(Instruction::Pop(Operand::ReturnAddress), Some(span))?; self.write_instruction(Instruction::Pop(Operand::ReturnAddress), Some(span))?;
let remaining_cleanup = block_scope.stack_offset() - 1; let remaining_cleanup = block_scope.stack_offset() - 1;
if remaining_cleanup > 0 { if remaining_cleanup > 0 {
self.write_instruction(
Instruction::Sub(
Operand::StackPointer,
Operand::StackPointer,
Operand::Number(remaining_cleanup.into()),
),
Some(span),
)?;
}
} else {
self.write_instruction( self.write_instruction(
Instruction::Sub( Instruction::Sub(
Operand::Register(VariableScope::TEMP_STACK_REGISTER),
Operand::StackPointer, Operand::StackPointer,
Operand::StackPointer, Operand::Number(ra_stack_offset.into()),
Operand::Number(remaining_cleanup.into()),
), ),
Some(span), Some(span),
)?; )?;
}
} else {
self.write_instruction(
Instruction::Sub(
Operand::Register(VariableScope::TEMP_STACK_REGISTER),
Operand::StackPointer,
Operand::Number(ra_stack_offset.into()),
),
Some(span),
)?;
self.write_instruction(
Instruction::Get(
Operand::ReturnAddress,
Operand::Device(Cow::from("db")),
Operand::Register(VariableScope::TEMP_STACK_REGISTER),
),
Some(span),
)?;
if block_scope.stack_offset() > 0 {
self.write_instruction( self.write_instruction(
Instruction::Sub( Instruction::Get(
Operand::StackPointer, Operand::ReturnAddress,
Operand::StackPointer, Operand::Device(Cow::from("db")),
Operand::Number(block_scope.stack_offset().into()), Operand::Register(VariableScope::TEMP_STACK_REGISTER),
), ),
Some(span), Some(span),
)?; )?;
if block_scope.stack_offset() > 0 {
self.write_instruction(
Instruction::Sub(
Operand::StackPointer,
Operand::StackPointer,
Operand::Number(block_scope.stack_offset().into()),
),
Some(span),
)?;
}
} }
self.write_instruction(Instruction::Jump(Operand::ReturnAddress), Some(span))?;
} }
self.write_instruction(Instruction::Jump(Operand::ReturnAddress), Some(span))?; // Reset the flag for the next function
self.current_return_is_tuple = false;
self.current_function_sp_saved = false;
self.current_function_name = None;
Ok(()) Ok(())
} }
} }

View File

@@ -441,7 +441,13 @@ impl<'a> Parser<'a> {
)); ));
} }
TokenType::Keyword(Keyword::Let) => Some(self.spanned(|p| p.declaration())?), TokenType::Keyword(Keyword::Let) => {
if self_matches_peek!(self, TokenType::Symbol(Symbol::LParen)) {
Some(self.spanned(|p| p.tuple_declaration())?)
} else {
Some(self.spanned(|p| p.declaration())?)
}
}
TokenType::Keyword(Keyword::Device) => { TokenType::Keyword(Keyword::Device) => {
let spanned_dev = self.spanned(|p| p.device())?; let spanned_dev = self.spanned(|p| p.device())?;
@@ -561,9 +567,7 @@ impl<'a> Parser<'a> {
}) })
} }
TokenType::Symbol(Symbol::LParen) => { TokenType::Symbol(Symbol::LParen) => self.parenthesized_or_tuple()?,
self.spanned(|p| p.priority())?.node.map(|node| *node)
}
TokenType::Symbol(Symbol::Minus) => { TokenType::Symbol(Symbol::Minus) => {
let start_span = self.current_span(); let start_span = self.current_span();
@@ -642,8 +646,8 @@ impl<'a> Parser<'a> {
} }
} }
TokenType::Symbol(Symbol::LParen) => *self TokenType::Symbol(Symbol::LParen) => *self
.spanned(|p| p.priority())? .parenthesized_or_tuple()?
.node .map(Box::new)
.ok_or(Error::UnexpectedEOF)?, .ok_or(Error::UnexpectedEOF)?,
TokenType::Identifier(ref id) if SysCall::is_syscall(id) => { TokenType::Identifier(ref id) if SysCall::is_syscall(id) => {
@@ -774,7 +778,8 @@ impl<'a> Parser<'a> {
| Expression::Ternary(_) | Expression::Ternary(_)
| Expression::Negation(_) | Expression::Negation(_)
| Expression::MemberAccess(_) | Expression::MemberAccess(_)
| Expression::MethodCall(_) => {} | Expression::MethodCall(_)
| Expression::Tuple(_) => {}
_ => { _ => {
return Err(Error::InvalidSyntax( return Err(Error::InvalidSyntax(
self.current_span(), self.current_span(),
@@ -1081,19 +1086,39 @@ impl<'a> Parser<'a> {
end_col: right.span.end_col, end_col: right.span.end_col,
}; };
expressions.insert( // Check if the left side is a tuple, and if so, create a TupleAssignment
i, let node = if let Expression::Tuple(tuple_expr) = &left.node {
Spanned { // Extract variable names from the tuple, handling underscores
let mut names = Vec::new();
for item in &tuple_expr.node {
if let Expression::Variable(var) = &item.node {
names.push(var.clone());
} else {
return Err(Error::InvalidSyntax(
item.span,
String::from("Tuple assignment can only contain variable names"),
));
}
}
Expression::TupleAssignment(Spanned {
span, span,
node: Expression::Assignment(Spanned { node: TupleAssignmentExpression {
span, names,
node: AssignmentExpression { value: boxed!(right),
assignee: boxed!(left), },
expression: boxed!(right), })
}, } else {
}), Expression::Assignment(Spanned {
}, span,
); node: AssignmentExpression {
assignee: boxed!(left),
expression: boxed!(right),
},
})
};
expressions.insert(i, Spanned { span, node });
} }
} }
operators.retain(|symbol| !matches!(symbol, Symbol::Assign)); operators.retain(|symbol| !matches!(symbol, Symbol::Assign));
@@ -1117,8 +1142,12 @@ impl<'a> Parser<'a> {
expressions.pop().ok_or(Error::UnexpectedEOF) expressions.pop().ok_or(Error::UnexpectedEOF)
} }
fn priority(&mut self) -> Result<Option<Box<Spanned<Expression<'a>>>>, Error<'a>> { fn parenthesized_or_tuple(
&mut self,
) -> Result<Option<Spanned<tree_node::Expression<'a>>>, Error<'a>> {
let start_span = self.current_span();
let current_token = self.current_token.as_ref().ok_or(Error::UnexpectedEOF)?; let current_token = self.current_token.as_ref().ok_or(Error::UnexpectedEOF)?;
if !token_matches!(current_token, TokenType::Symbol(Symbol::LParen)) { if !token_matches!(current_token, TokenType::Symbol(Symbol::LParen)) {
return Err(Error::UnexpectedToken( return Err(Error::UnexpectedToken(
self.current_span(), self.current_span(),
@@ -1127,17 +1156,112 @@ impl<'a> Parser<'a> {
} }
self.assign_next()?; self.assign_next()?;
let expression = self.expression()?.ok_or(Error::UnexpectedEOF)?;
let current_token = self.get_next()?.ok_or(Error::UnexpectedEOF)?; // Handle empty tuple '()'
if !token_matches!(current_token, TokenType::Symbol(Symbol::RParen)) { if self_matches_peek!(self, TokenType::Symbol(Symbol::RParen)) {
return Err(Error::UnexpectedToken( self.assign_next()?;
Self::token_to_span(&current_token), let end_span = self.current_span();
current_token, let span = Span {
)); start_line: start_span.start_line,
start_col: start_span.start_col,
end_line: end_span.end_line,
end_col: end_span.end_col,
};
return Ok(Some(Spanned {
span,
node: Expression::Tuple(Spanned { span, node: vec![] }),
}));
} }
Ok(Some(boxed!(expression))) let first_expression = self.expression()?.ok_or(Error::UnexpectedEOF)?;
if self_matches_peek!(self, TokenType::Symbol(Symbol::Comma)) {
// It is a tuple
let mut items = vec![first_expression];
while self_matches_peek!(self, TokenType::Symbol(Symbol::Comma)) {
// Next toekn is a comma, we need to consume it and advance 1 more time.
self.assign_next()?;
self.assign_next()?;
items.push(self.expression()?.ok_or(Error::UnexpectedEOF)?);
}
let next = self.get_next()?.ok_or(Error::UnexpectedEOF)?;
if !token_matches!(next, TokenType::Symbol(Symbol::RParen)) {
return Err(Error::UnexpectedToken(Self::token_to_span(&next), next));
}
let end_span = Self::token_to_span(&next);
let span = Span {
start_line: start_span.start_line,
start_col: start_span.start_col,
end_line: end_span.end_line,
end_col: end_span.end_col,
};
Ok(Some(Spanned {
span,
node: Expression::Tuple(Spanned { span, node: items }),
}))
} else {
// It is just priority
let next = self.get_next()?.ok_or(Error::UnexpectedEOF)?;
if !token_matches!(next, TokenType::Symbol(Symbol::RParen)) {
return Err(Error::UnexpectedToken(Self::token_to_span(&next), next));
}
Ok(Some(Spanned {
span: first_expression.span,
node: Expression::Priority(boxed!(first_expression)),
}))
}
}
fn tuple_declaration(&mut self) -> Result<Expression<'a>, Error<'a>> {
// 'let' is consumed before this call
// expect '('
let next = self.get_next()?.ok_or(Error::UnexpectedEOF)?;
if !token_matches!(next, TokenType::Symbol(Symbol::LParen)) {
return Err(Error::UnexpectedToken(Self::token_to_span(&next), next));
}
let mut names = Vec::new();
while !self_matches_peek!(self, TokenType::Symbol(Symbol::RParen)) {
let token = self.get_next()?.ok_or(Error::UnexpectedEOF)?;
let span = Self::token_to_span(&token);
if let TokenType::Identifier(id) = token.token_type {
names.push(Spanned { span, node: id });
} else {
return Err(Error::UnexpectedToken(span, token));
}
if self_matches_peek!(self, TokenType::Symbol(Symbol::Comma)) {
self.assign_next()?;
}
}
self.assign_next()?; // consume ')'
let assign = self.get_next()?.ok_or(Error::UnexpectedEOF)?;
if !token_matches!(assign, TokenType::Symbol(Symbol::Assign)) {
return Err(Error::UnexpectedToken(Self::token_to_span(&assign), assign));
}
self.assign_next()?; // Consume the `=`
let value = self.expression()?.ok_or(Error::UnexpectedEOF)?;
let semi = self.get_next()?.ok_or(Error::UnexpectedEOF)?;
if !token_matches!(semi, TokenType::Symbol(Symbol::Semicolon)) {
return Err(Error::UnexpectedToken(Self::token_to_span(&semi), semi));
}
Ok(Expression::TupleDeclaration(Spanned {
span: names.first().map(|n| n.span).unwrap_or(value.span),
node: TupleDeclarationExpression {
names,
value: boxed!(value),
},
}))
} }
fn invocation(&mut self) -> Result<InvocationExpression<'a>, Error<'a>> { fn invocation(&mut self) -> Result<InvocationExpression<'a>, Error<'a>> {

View File

@@ -112,7 +112,7 @@ fn test_function_invocation() -> Result<()> {
#[test] #[test]
fn test_priority_expression() -> Result<()> { fn test_priority_expression() -> Result<()> {
let input = r#" let input = r#"
let x = (4); let x = (4 + 3);
"#; "#;
let tokenizer = Tokenizer::from(input); let tokenizer = Tokenizer::from(input);
@@ -120,7 +120,7 @@ fn test_priority_expression() -> Result<()> {
let expression = parser.parse()?.unwrap(); let expression = parser.parse()?.unwrap();
assert_eq!("(let x = 4)", expression.to_string()); assert_eq!("(let x = ((4 + 3)))", expression.to_string());
Ok(()) Ok(())
} }
@@ -137,7 +137,7 @@ fn test_binary_expression() -> Result<()> {
assert_eq!("(((45 * 2) - (15 / 5)) + (5 ** 2))", expr.to_string()); assert_eq!("(((45 * 2) - (15 / 5)) + (5 ** 2))", expr.to_string());
let expr = parser!("(5 - 2) * 10;").parse()?.unwrap(); let expr = parser!("(5 - 2) * 10;").parse()?.unwrap();
assert_eq!("((5 - 2) * 10)", expr.to_string()); assert_eq!("(((5 - 2)) * 10)", expr.to_string());
Ok(()) Ok(())
} }
@@ -170,7 +170,7 @@ fn test_ternary_expression() -> Result<()> {
fn test_complex_binary_with_ternary() -> Result<()> { fn test_complex_binary_with_ternary() -> Result<()> {
let expr = parser!("let i = (x ? 1 : 3) * 2;").parse()?.unwrap(); let expr = parser!("let i = (x ? 1 : 3) * 2;").parse()?.unwrap();
assert_eq!("(let i = ((x ? 1 : 3) * 2))", expr.to_string()); assert_eq!("(let i = (((x ? 1 : 3)) * 2))", expr.to_string());
Ok(()) Ok(())
} }
@@ -191,3 +191,99 @@ fn test_nested_ternary_right_associativity() -> Result<()> {
assert_eq!("(let i = (a ? b : (c ? d : e)))", expr.to_string()); assert_eq!("(let i = (a ? b : (c ? d : e)))", expr.to_string());
Ok(()) Ok(())
} }
#[test]
fn test_tuple_declaration() -> Result<()> {
let expr = parser!("let (x, _) = (1, 2);").parse()?.unwrap();
assert_eq!("(let (x, _) = (1, 2))", expr.to_string());
Ok(())
}
#[test]
fn test_tuple_assignment() -> Result<()> {
let expr = parser!("(x, y) = (1, 2);").parse()?.unwrap();
assert_eq!("((x, y) = (1, 2))", expr.to_string());
Ok(())
}
#[test]
fn test_tuple_assignment_with_underscore() -> Result<()> {
let expr = parser!("(x, _) = (1, 2);").parse()?.unwrap();
assert_eq!("((x, _) = (1, 2))", expr.to_string());
Ok(())
}
#[test]
fn test_tuple_declaration_with_function_call() -> Result<()> {
let expr = parser!("let (x, y) = doSomething();").parse()?.unwrap();
assert_eq!("(let (x, y) = doSomething())", expr.to_string());
Ok(())
}
#[test]
fn test_tuple_declaration_with_function_call_with_underscore() -> Result<()> {
let expr = parser!("let (x, _) = doSomething();").parse()?.unwrap();
assert_eq!("(let (x, _) = doSomething())", expr.to_string());
Ok(())
}
#[test]
fn test_tuple_assignment_with_function_call() -> Result<()> {
let expr = parser!("(x, y) = doSomething();").parse()?.unwrap();
assert_eq!("((x, y) = doSomething())", expr.to_string());
Ok(())
}
#[test]
fn test_tuple_assignment_with_function_call_with_underscore() -> Result<()> {
let expr = parser!("(x, _) = doSomething();").parse()?.unwrap();
assert_eq!("((x, _) = doSomething())", expr.to_string());
Ok(())
}
#[test]
fn test_tuple_declaration_with_complex_expressions() -> Result<()> {
let expr = parser!("let (x, y) = (1 + 1, doSomething());")
.parse()?
.unwrap();
assert_eq!("(let (x, y) = ((1 + 1), doSomething()))", expr.to_string());
Ok(())
}
#[test]
fn test_tuple_assignment_with_complex_expressions() -> Result<()> {
let expr = parser!("(x, y) = (doSomething(), 123 / someValue.Setting);")
.parse()?
.unwrap();
assert_eq!(
"((x, y) = (doSomething(), (123 / someValue.Setting)))",
expr.to_string()
);
Ok(())
}
#[test]
fn test_tuple_declaration_all_complex_expressions() -> Result<()> {
let expr = parser!("let (x, y) = (a + b, c * d);").parse()?.unwrap();
assert_eq!("(let (x, y) = ((a + b), (c * d)))", expr.to_string());
Ok(())
}

View File

@@ -245,6 +245,42 @@ impl<'a> std::fmt::Display for DeviceDeclarationExpression<'a> {
} }
} }
#[derive(Debug, PartialEq, Eq)]
pub struct TupleDeclarationExpression<'a> {
pub names: Vec<Spanned<Cow<'a, str>>>,
pub value: Box<Spanned<Expression<'a>>>,
}
impl<'a> std::fmt::Display for TupleDeclarationExpression<'a> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
let names = self
.names
.iter()
.map(|n| n.node.to_string())
.collect::<Vec<_>>()
.join(", ");
write!(f, "(let ({}) = {})", names, self.value)
}
}
#[derive(Debug, PartialEq, Eq)]
pub struct TupleAssignmentExpression<'a> {
pub names: Vec<Spanned<Cow<'a, str>>>,
pub value: Box<Spanned<Expression<'a>>>,
}
impl<'a> std::fmt::Display for TupleAssignmentExpression<'a> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
let names = self
.names
.iter()
.map(|n| n.node.to_string())
.collect::<Vec<_>>()
.join(", ");
write!(f, "(({}) = {})", names, self.value)
}
}
#[derive(Debug, PartialEq, Eq)] #[derive(Debug, PartialEq, Eq)]
pub struct IfExpression<'a> { pub struct IfExpression<'a> {
pub condition: Box<Spanned<Expression<'a>>>, pub condition: Box<Spanned<Expression<'a>>>,
@@ -348,6 +384,9 @@ pub enum Expression<'a> {
Return(Option<Box<Spanned<Expression<'a>>>>), Return(Option<Box<Spanned<Expression<'a>>>>),
Syscall(Spanned<SysCall<'a>>), Syscall(Spanned<SysCall<'a>>),
Ternary(Spanned<TernaryExpression<'a>>), Ternary(Spanned<TernaryExpression<'a>>),
Tuple(Spanned<Vec<Spanned<Expression<'a>>>>),
TupleAssignment(Spanned<TupleAssignmentExpression<'a>>),
TupleDeclaration(Spanned<TupleDeclarationExpression<'a>>),
Variable(Spanned<Cow<'a, str>>), Variable(Spanned<Cow<'a, str>>),
While(Spanned<WhileExpression<'a>>), While(Spanned<WhileExpression<'a>>),
} }
@@ -384,8 +423,20 @@ impl<'a> std::fmt::Display for Expression<'a> {
), ),
Expression::Syscall(e) => write!(f, "{}", e), Expression::Syscall(e) => write!(f, "{}", e),
Expression::Ternary(e) => write!(f, "{}", e), Expression::Ternary(e) => write!(f, "{}", e),
Expression::Tuple(e) => {
let items = e
.node
.iter()
.map(|x| x.to_string())
.collect::<Vec<_>>()
.join(", ");
write!(f, "({})", items)
}
Expression::TupleAssignment(e) => write!(f, "{}", e),
Expression::TupleDeclaration(e) => write!(f, "{}", e),
Expression::Variable(id) => write!(f, "{}", id), Expression::Variable(id) => write!(f, "{}", id),
Expression::While(e) => write!(f, "{}", e), Expression::While(e) => write!(f, "{}", e),
} }
} }
} }

View File

@@ -115,7 +115,7 @@ macro_rules! keyword {
} }
#[derive(Debug, PartialEq, Hash, Eq, Clone, Logos)] #[derive(Debug, PartialEq, Hash, Eq, Clone, Logos)]
#[logos(skip r"[ \t\f]+")] #[logos(skip r"[ \r\t\f]+")]
#[logos(extras = Extras)] #[logos(extras = Extras)]
#[logos(error(LexError, LexError::from_lexer))] #[logos(error(LexError, LexError::from_lexer))]
pub enum TokenType<'a> { pub enum TokenType<'a> {
@@ -843,3 +843,20 @@ documented! {
} }
} }
#[cfg(test)]
mod tests {
use super::TokenType;
use logos::Logos;
#[test]
fn test_windows_crlf_endings() -> anyhow::Result<()> {
let src = "let i = 0;\r\n";
let lexer = TokenType::lexer(src);
let tokens = lexer.collect::<Vec<_>>();
assert!(!tokens.iter().any(|res| res.is_err()));
Ok(())
}
}

View File

@@ -1,43 +0,0 @@
device self = "db";
device gasSensor = "d0";
device atmosAnal = "d1";
device atmosValve = "d2";
device atmosTank = "d3";
device atmosInlet = "d4";
atmosInlet.Lock = true;
atmosInlet.Mode = 1;
atmosValve.On = false;
atmosValve.Lock = true;
let isPumping = false;
let tempPressure = 0;
loop {
yield();
let temp = gasSensor.Temperature;
let pres = atmosAnal.Pressure;
let liqV = atmosAnal.VolumeOfLiquid;
let tempVol = atmosAnal.Volume;
let stress = 5_000 * liqV / tempVol;
tempPressure = isPumping ? 1_000 : 10_000;
let shouldTurnOnInlet = (
temp > 0c &&
pres < tempPressure &&
stress < 50
);
isPumping = (
!shouldTurnOnInlet &&
atmosTank.Pressure < 35_000 &&
atmosAnal.RatioPollutant == 0 &&
atmosAnal.RatioLiquidPollutant == 0 &&
atmosAnal.Pressure > 1_000
);
atmosValve.On = isPumping;
atmosInlet.On = shouldTurnOnInlet;
}

View File

@@ -1,72 +0,0 @@
/// Laree script V1
device self = "db";
device larre = "d0";
device exportChute = "d1";
const TOTAL_SLOTS = 19;
const EXPORT_CHUTE = 1;
const START_STATION = 2;
let currentIndex = 0;
/// Waits for the larre to be idle before continuing
fn waitForIdle() {
yield();
while (!larre.Idle) {
yield();
}
}
/// Instructs the Larre to go to the chute and deposit
/// what is currently in its arm
fn deposit() {
larre.Setting = EXPORT_CHUTE;
waitForIdle();
larre.Activate = true;
waitForIdle();
exportChute.Open = false;
}
/// This function is responsible for checking the plant under
/// the larre at this index, and harvesting if applicable
fn checkAndHarvest(currentIndex) {
if (currentIndex <= EXPORT_CHUTE || ls(larre, 255, "Seeding") < 1) {
return;
}
// harvest from this device
while (ls(larre, 255, "Mature")) {
yield();
larre.Activate = true;
}
let hasRemainingPlant = ls(larre, 255, "Occupied");
// move to the export chute
larre.Setting = EXPORT_CHUTE;
waitForIdle();
deposit();
if (hasRemainingPlant) {
deposit();
}
larre.Setting = currentIndex;
waitForIdle();
if (ls(larre, 0, "Occupied")) {
larre.Activate = true;
}
waitForIdle();
}
loop {
yield();
if (!larre.Idle) {
continue;
}
let newIndex = currentIndex + 1 > TOTAL_SLOTS ? START_STATION : currentIndex + 1;
checkAndHarvest(currentIndex);
larre.Setting = newIndex;
currentIndex = newIndex;
}