25 Commits

Author SHA1 Message Date
8029fa82b0 complex tuple expressions supported 2025-12-30 02:38:32 -07:00
6d8a22459c wip 2025-12-30 02:31:21 -07:00
20f0f4b9a1 working tuple types 2025-12-30 00:58:02 -07:00
5a88befac9 tuple return types just about implemented 2025-12-30 00:32:55 -07:00
e94fc0f5de Functions returning tuples somewhat working, but they clobber the popped ra 2025-12-29 23:55:00 -07:00
b51800eb77 wip -- tuples compiling. need more work on function invocations 2025-12-29 23:17:18 -07:00
87951ab12f Support tuple assignment expressions and tuple assignments and declarations with function invocations 2025-12-29 22:33:16 -07:00
00b0d4df26 Create new tuple expression types 2025-12-29 22:17:19 -07:00
6ca53e8959 Merge pull request 'Added support for CRLF windows line endings' (#11) from 41-support-windows-crlf-line-endings into master
All checks were successful
CI/CD Pipeline / test (push) Successful in 33s
CI/CD Pipeline / build (push) Successful in 1m42s
CI/CD Pipeline / release (push) Successful in 5s
Reviewed-on: #11
2025-12-29 12:32:59 -07:00
8dfdad3f34 Added support for CRLF windows line endings
All checks were successful
CI/CD Pipeline / test (pull_request) Successful in 34s
CI/CD Pipeline / build (pull_request) Has been skipped
CI/CD Pipeline / release (pull_request) Has been skipped
2025-12-29 12:29:01 -07:00
e272737ea2 Merge pull request 'Fixed const -> let bug' (#10) from declaration_const_as_let into master
All checks were successful
CI/CD Pipeline / test (push) Successful in 32s
CI/CD Pipeline / build (push) Successful in 1m43s
CI/CD Pipeline / release (push) Successful in 5s
Reviewed-on: #10
2025-12-29 02:44:50 -07:00
f679601818 Fixed const -> let bug
All checks were successful
CI/CD Pipeline / test (pull_request) Successful in 33s
CI/CD Pipeline / build (pull_request) Has been skipped
CI/CD Pipeline / release (pull_request) Has been skipped
2025-12-29 02:31:23 -07:00
3ca6f97db1 Merge pull request 'IC10Editor fix' (#9) from live-reload into master
All checks were successful
CI/CD Pipeline / test (push) Successful in 33s
CI/CD Pipeline / build (push) Successful in 1m41s
CI/CD Pipeline / release (push) Successful in 4s
Reviewed-on: #9
2025-12-27 22:26:50 -07:00
34817ee111 Merge branch 'master' of ssh://git.biddydev.com:2222/dbidwell/stationeers_lang into live-reload
All checks were successful
CI/CD Pipeline / test (pull_request) Successful in 32s
CI/CD Pipeline / build (pull_request) Has been skipped
CI/CD Pipeline / release (pull_request) Has been skipped
2025-12-27 22:19:09 -07:00
9eef8a77b6 Merge pull request 'Update About.xml docs for the workshop' (#8) from documentation into master
All checks were successful
CI/CD Pipeline / test (push) Successful in 34s
CI/CD Pipeline / build (push) Successful in 1m41s
CI/CD Pipeline / release (push) Has been skipped
Reviewed-on: #8
2025-12-27 22:19:00 -07:00
de31851153 Fixed IC10Editor implementation bug where IC10 code would not update after clicking 'Cancel' 2025-12-27 22:18:21 -07:00
3543b87561 wip 2025-12-27 16:03:36 -07:00
effef64add Update About.xml docs for the workshop
All checks were successful
CI/CD Pipeline / test (pull_request) Successful in 33s
CI/CD Pipeline / build (pull_request) Has been skipped
CI/CD Pipeline / release (pull_request) Has been skipped
2025-12-26 22:33:48 -07:00
794b27b8c6 Merge pull request 'documentation' (#7) from documentation into master
All checks were successful
CI/CD Pipeline / test (push) Successful in 33s
CI/CD Pipeline / build (push) Successful in 1m42s
CI/CD Pipeline / release (push) Has been skipped
Reviewed-on: #7
2025-12-26 22:02:46 -07:00
27e8987831 removed the temporary example slang scripts from the root directory
All checks were successful
CI/CD Pipeline / test (pull_request) Successful in 34s
CI/CD Pipeline / build (pull_request) Has been skipped
CI/CD Pipeline / release (pull_request) Has been skipped
2025-12-26 22:00:28 -07:00
0fdceac22c changed markdown tags from slang to rust 2025-12-26 21:57:11 -07:00
85f8b136e1 Update markdown tags to use rust instead of mips 2025-12-26 21:56:21 -07:00
c91086157a Added documentation for various language features and in-game functions. Added example scripts 2025-12-26 21:55:36 -07:00
6bee591484 Merge pull request 'Added stationpedia docs back into the game patches' (#6) from docs-fix into master
All checks were successful
CI/CD Pipeline / test (push) Successful in 33s
CI/CD Pipeline / build (push) Successful in 1m44s
CI/CD Pipeline / release (push) Successful in 5s
Reviewed-on: #6
2025-12-26 16:20:16 -07:00
c3c14cec23 Added stationpedia docs back into the game patches
All checks were successful
CI/CD Pipeline / test (pull_request) Successful in 33s
CI/CD Pipeline / build (pull_request) Has been skipped
CI/CD Pipeline / release (pull_request) Has been skipped
2025-12-26 16:18:24 -07:00
23 changed files with 3366 additions and 288 deletions

View File

@@ -1,5 +1,29 @@
# Changelog
[0.4.7]
- Added support for Windows CRLF endings
[0.4.6]
- Fixed bug in compiler where you were unable to assign a `const` value to
a `let` variable
[0.4.5]
- Fixed issue where after clicking "Cancel" on the IC10 Editor, the side-by-side
IC10 output would no longer update with highlighting or code updates.
- Added ability to live-reload the mod while developing using the `ScriptEngine`
mod from BepInEx
- This required adding in cleanup code to cleanup references to the Rust DLL
before destroying the mod instance.
- Added BepInEx debug logging. This will ONLY show if you have debug logs
enabled in the BepInEx configuration file.
[0.4.4]
- Added Stationpedia docs back after removing all harmony patches from the mod
[0.4.3]
- Removed references to the `Mod` class from SLP. This was the root of the multiplayer

View File

@@ -2,11 +2,11 @@
<ModMetadata xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<Name>Slang</Name>
<Author>JoeDiertay</Author>
<Version>0.4.3</Version>
<Version>0.4.7</Version>
<Description>
[h1]Slang: High-Level Programming for Stationeers[/h1]
Stop writing assembly. Start writing code.
Iterate faster. Stop writing assembly. Start writing code.
Slang (Stationeers Language) brings modern programming to Stationeers. It allows you to write scripts using a familiar C-style syntax (variables, functions, if/else, loops) directly in the in-game editor. When you hit confirm, Slang compiles your code into IC10 instantly.
@@ -15,7 +15,7 @@ Slang (Stationeers Language) brings modern programming to Stationeers. It allows
[h2]Features[/h2]
[list]
[*] [b]In-Game Compilation:[/b] No external tools needed. Write Slang directly in the IC editor.
[*] [b]No More Register Juggling:[/b] Define variables with let (e.g., let temp = 300). The compiler manages r0-r15 for you.
[*] [b]No More Register Juggling:[/b] Define variables with let (e.g., let temp = 200c). The compiler manages r0-r15 for you.
[*] [b]Control Flow:[/b] Write readable logic with if, else, while, loop, break, and continue.
[*] [b]Functions:[/b] Create reusable code blocks with arguments.
[*] [b]Smart Editor:[/b] Get real-time syntax highlighting and error checking (red text) as you type.
@@ -53,14 +53,13 @@ loop {
[h2]Known Issues (Beta)[/h2]
[list]
[*] [b]Stack Access:[/b] Direct stack memory access is disabled to prevent conflicts with the compiler's internal memory management. A workaround is being planned.
[*] [b]Documentation:[/b] In-game tooltips for syscalls (like load, set) are WIP. Check the "Slang" entry in the Stationpedia (F1) for help.
[*] [b]Documentation:[/b] In-game tooltips for syscalls (like load, set) are WIP. Check the "Slang" entry in the Stationpedia (F1) for help, or checkout [url=https://github.com/dbidwell94/stationeers_lang/blob/master/docs/getting-started.md]The Docs[/url] for guides on how to get started.
[/list]
[h2]Planned Features[/h2]
[list]
[*] Enhanced LSP features (Autocomplete, Go to Definition).
[*] Full feature parity with all IC10 instructions.
[*] Tutorials and beginner script examples.
[/list]
[h2]FAQ[/h2]
@@ -70,10 +69,18 @@ A: The Slang compiler is built in Rust for performance and reliability. It is co
[b]Q: Is this compatible with my current save?[/b]
A: Yes! Slang does not modify any existing IC10 code, it is only a compiler. As a matter of fact: if you wish to stop using Slang at any time, your compiled IC10 will still exist on the chip. However: Slang adds a comment at the bottom of your compiled IC10 which is a GZIP and base64 encoded version of your Slang source code. This might break line limits with Slang not installed. If you wish to no longer use Slang, I recommend you remove this comment from the source code after uninstalling Slang.
[b]Q: Does this modify the in-game scripting language[/b]
A: No! Slang compiles directly to IC10. Any valid Slang file will produce valid IC10. The goal of this mod is twofold:
[list]
[*] Allow experienced users to quickly iterate on their scripts to get back into base upgrades faster
[*] Allow newcomers who already know C-style languages (JS/C#/Java/Rust/C/etc) to see how it maps to IC10 so they can get to understand IC10 better
[/list]
[h2]Useful Links[/h2]
[url=https://github.com/dbidwell94/stationeers_lang]Source Code on GitHub[/url]
[url=https://discord.gg/stationeers]Stationeers Official Discord[/url]
[url=https://discord.gg/M4sCfYMacs]Stationeers Modding Discord[/url]
[url=https://github.com/dbidwell94/stationeers_lang/blob/master/docs/getting-started.md]Getting Started Guide[/url]
</Description>
<ChangeLog xsi:nil="true" />
<WorkshopHandle>3619985558</WorkshopHandle>
@@ -116,5 +123,7 @@ A: Yes! Slang does not modify any existing IC10 code, it is only a compiler. As
See: https://github.com/StationeersLaunchPad/StationeersLaunchPad
Source Code: https://github.com/dbidwell94/stationeers_lang
Documentation: https://github.com/dbidwell94/stationeers_lang/blob/master/docs/getting-started.md
]]></InGameDescription>
</ModMetadata>

View File

@@ -1,30 +1,45 @@
# Stationeers Language (slang)
# Slang Language Documentation
This is an ambitious attempt at creating:
Slang is a high-level programming language that compiles to IC10 assembly for [Stationeers](https://store.steampowered.com/app/544550/Stationeers/).
It provides a familiar C-like syntax while targeting the limited instruction set
of in-game IC10.
- A new programming language (slang)
- A compiler to translate slang -> IC10
- A mod to allow direct input of slang in the in-game script editor to
automatically compile to IC10 before running
## Quick Links
This project currently outputs 3 files:
- [Getting Started](docs/getting-started.md) - Installation and first program
- [Language Reference](docs/language-reference.md) - Complete syntax guide
- [Built-in Functions](docs/builtins.md) - System calls and math functions
- [Examples](docs/examples.md) - Real-world code samples
- A Linux CLI
- A Windows CLI
- A Windows FFI dll
- Contains a single function: `compile_from_string`
## Overview
The aim of this project is to lower the amount of time it takes to code simple
scripts in Stationeers so you can get back to engineering atmospherics or
whatever you are working on. This project is NOT meant to fully replace IC10.
Obviously hand-coded assembly written by an experienced programmer is more
optimized and smaller than something that a C compiler will spit out. This is
the same way. It WILL produce valid IC10, but for large complicated projects it
might produce over the allowed limit of lines the in-game editor supports.
Slang aims to reduce the time spent writing IC10 assembly by providing:
Current Unknowns
- **Familiar syntax** - C-like declarations, control flow, and expressions
- **Device abstraction** - Named device bindings with property access
- **Automatic register allocation** - No manual register management
- **Built-in functions** - Math operations and device I/O as function calls
- **Temperature literals** - Native support for Celsius, Fahrenheit, and Kelvin
- Should I support a configurable script line length in-game to allow larger
scripts to be saved?
- Should compilation be "behind the scenes" (in game editor will ALWAYS be what
you put in. IC10 will be IC10, slang will be slang)
## Example
```rust
device gasSensor = "d0";
device airCon = "d1";
const TARGET_TEMP = 20c;
loop {
yield();
airCon.On = gasSensor.Temperature > TARGET_TEMP;
}
```
This compiles to IC10 that monitors temperature and controls an air
conditioner.
## Project Status
Slang is under active development. It may produce suboptimal code for complex programs.
It is not a replacement for IC10, for performance-critical or large scripts,
hand-written IC10 may still be preferred.

View File

@@ -6,7 +6,6 @@ using System.Linq;
using System.Threading;
using System.Threading.Tasks;
using StationeersIC10Editor;
using StationeersIC10Editor.IC10;
public class SlangFormatter : ICodeFormatter
{
@@ -14,8 +13,25 @@ public class SlangFormatter : ICodeFormatter
private CancellationTokenSource? _lspCancellationToken;
private object _tokenLock = new();
protected Editor? Ic10Editor = null;
private IC10CodeFormatter iC10CodeFormatter = new IC10CodeFormatter();
protected Editor? __Ic10Editor = null;
protected Editor Ic10Editor
{
get
{
if (__Ic10Editor == null)
{
var tab = Editor.ParentTab;
tab.ClearExtraEditors();
__Ic10Editor = new Editor(Editor.KeyHandler);
Ic10Editor.IsReadOnly = true;
tab.AddEditor(__Ic10Editor);
}
return __Ic10Editor;
}
}
private string ic10CompilationResult = "";
private List<SourceMapEntry> ic10SourceMap = new();
@@ -80,7 +96,7 @@ public class SlangFormatter : ICodeFormatter
{
if (!Marshal.CompileFromString(RawText, out var compilationResult, out var sourceMap))
{
return "Compilation Error";
return "# Compilation Error";
}
return compilationResult + $"\n{EncodeSource(RawText, SLANG_SRC)}";
@@ -118,6 +134,10 @@ public class SlangFormatter : ICodeFormatter
return styledLine;
}
/// <summary>
/// This handles calling the `HandleLsp` function by creating a new `CancellationToken` and
/// cancelling the current call if applicable.
/// </summary>
private void HandleCodeChanged()
{
CancellationToken token;
@@ -133,6 +153,11 @@ public class SlangFormatter : ICodeFormatter
_ = HandleLsp(inputSrc, token);
}
/// <summary>
/// Takes a copy of the current source code and sends it to the Rust compiler in a background thread
/// to get diagnostic data. This also handles getting a compilation response of optimized IC10 for the
/// side-by-side IC10Editor to show with sourcemap highlighting.
/// </summary>
private async Task HandleLsp(string inputSrc, CancellationToken cancellationToken)
{
try
@@ -165,24 +190,21 @@ public class SlangFormatter : ICodeFormatter
return;
}
var (compilationSuccess, compiled, sourceMap) = await Task.Run(
() =>
{
var successful = Marshal.CompileFromString(
inputSrc,
out var compiled,
out var sourceMap
);
return (successful, compiled, sourceMap);
},
cancellationToken
);
var (compilationSuccess, compiled, sourceMap) = await Task.Run(() =>
{
var successful = Marshal.CompileFromString(
inputSrc,
out var compiled,
out var sourceMap
);
return (successful, compiled, sourceMap);
});
if (compilationSuccess)
{
ic10CompilationResult = compiled;
ic10SourceMap = sourceMap;
UpdateIc10Formatter();
UpdateIc10Content(Ic10Editor);
}
}
catch (OperationCanceledException) { }
@@ -192,22 +214,24 @@ public class SlangFormatter : ICodeFormatter
}
}
/// <summary>
/// Updates the underlying code in the IC10 Editor, after which will call `UpdateIc10Formatter` to
/// update highlighting of relavent fields.
/// </summary>
private void UpdateIc10Content(Editor editor)
{
editor.ResetCode(ic10CompilationResult);
UpdateIc10Formatter();
}
// This runs on the main thread. This function ONLY updates the highlighting of the IC10 code.
// If you need to update the code in the editor itself, you should use `UpdateIc10Content`.
private void UpdateIc10Formatter()
{
var tab = Editor.ParentTab;
if (Ic10Editor == null)
{
iC10CodeFormatter = new IC10CodeFormatter();
Ic10Editor = new Editor(Editor.KeyHandler);
Ic10Editor.IsReadOnly = true;
iC10CodeFormatter.Editor = Ic10Editor;
}
if (tab.Editors.Count < 2)
{
tab.AddEditor(Ic10Editor);
}
// Bail if our backing field is null. We don't want to set the field in this function. It
// runs way too much and we might not even have source code to use.
if (__Ic10Editor == null)
return;
var caretPos = Editor.CaretPos.Line;
// get the slang sourceMap at the current editor line
@@ -215,10 +239,6 @@ public class SlangFormatter : ICodeFormatter
entry.SlangSource.StartLine == caretPos || entry.SlangSource.EndLine == caretPos
);
// extract the current "context" of the ic10 compilation. The current Slang source line
// should be directly next to the compiled IC10 source line, and we should highlight the
// IC10 code that directly represents the Slang source
Ic10Editor.ResetCode(ic10CompilationResult);
if (lines.Count() < 1)
@@ -245,7 +265,11 @@ public class SlangFormatter : ICodeFormatter
};
}
// This runs on the Main Thread
/// <summary>
/// Takes diagnostics from the Rust FFI compiler and applies it as semantic tokens to the
/// source in this editor.
/// This runs on the Main Thread
/// </summary>
private void ApplyDiagnostics(Dictionary<uint, IGrouping<uint, Diagnostic>> dict)
{
HashSet<uint> linesToRefresh;

View File

@@ -67,7 +67,9 @@ public static class Marshal
try
{
_libraryHandle = LoadLibrary(ExtractNativeLibrary(Ffi.RustLib));
L.Debug("Rust DLL loaded successfully. Enjoy native speed compilations!");
CodeFormatters.RegisterFormatter("Slang", typeof(SlangFormatter), true);
return true;
}
catch (Exception ex)
@@ -91,8 +93,13 @@ public static class Marshal
try
{
FreeLibrary(_libraryHandle);
CodeFormatters.RegisterFormatter("Slang", typeof(PlainTextFormatter), true);
if (!FreeLibrary(_libraryHandle))
{
L.Warning("Unable to free Rust library");
}
_libraryHandle = IntPtr.Zero;
L.Debug("Rust DLL library freed");
return true;
}
catch (Exception ex)
@@ -191,9 +198,9 @@ public static class Marshal
Assembly assembly = Assembly.GetExecutingAssembly();
using (Stream stream = assembly.GetManifestResourceStream(libName))
using (Stream resourceStream = assembly.GetManifestResourceStream(libName))
{
if (stream == null)
if (resourceStream == null)
{
L.Error(
$"{libName} not found. This means it was not embedded in the mod. Please contact the mod author!"
@@ -201,18 +208,85 @@ public static class Marshal
return "";
}
// Check if file exists and contents are identical to avoid overwriting locked files
if (File.Exists(destinationPath))
{
try
{
using (
FileStream fileStream = new FileStream(
destinationPath,
FileMode.Open,
FileAccess.Read,
FileShare.ReadWrite
)
)
{
if (resourceStream.Length == fileStream.Length)
{
if (StreamsContentsAreEqual(resourceStream, fileStream))
{
L.Debug(
$"DLL {libName} already exists and matches. Skipping extraction."
);
return destinationPath;
}
}
}
}
catch (IOException ex)
{
L.Warning(
$"Could not verify existing {libName}, attempting overwrite. {ex.Message}"
);
}
}
resourceStream.Position = 0;
// Attempt to overwrite if missing or different
try
{
using (FileStream fileStream = new FileStream(destinationPath, FileMode.Create))
{
stream.CopyTo(fileStream);
resourceStream.CopyTo(fileStream);
}
return destinationPath;
}
catch (IOException e)
{
L.Warning($"Could not overwrite {libName} (it might be in use): {e.Message}");
return "";
// If we fail here, the file is likely locked.
// However, if we are here, it means the file is DIFFERENT or we couldn't read it.
// As a fallback for live-reload, we can try returning the path anyway
// assuming the existing locked file might still work.
L.Warning(
$"Could not overwrite {libName} (it might be in use): {e.Message}. Attempting to use existing file."
);
return destinationPath;
}
}
}
private static bool StreamsContentsAreEqual(Stream stream1, Stream stream2)
{
const int bufferSize = 4096;
byte[] buffer1 = new byte[bufferSize];
byte[] buffer2 = new byte[bufferSize];
while (true)
{
int count1 = stream1.Read(buffer1, 0, bufferSize);
int count2 = stream2.Read(buffer2, 0, bufferSize);
if (count1 != count2)
return false;
if (count1 == 0)
return true;
for (int i = 0; i < count1; i++)
{
if (buffer1[i] != buffer2[i])
return false;
}
}
}

18
csharp_mod/Patches.cs Normal file
View File

@@ -0,0 +1,18 @@
namespace Slang;
using Assets.Scripts.UI;
using HarmonyLib;
[HarmonyPatch]
public static class SlangPatches
{
[HarmonyPatch(typeof(Stationpedia), nameof(Stationpedia.Regenerate))]
[HarmonyPostfix]
public static void Stationpedia_Regenerate()
{
foreach (var page in Marshal.GetSlangDocs())
{
Stationpedia.Register(page);
}
}
}

View File

@@ -1,4 +1,3 @@
using System.Text.RegularExpressions;
using BepInEx;
using HarmonyLib;
@@ -40,43 +39,32 @@ namespace Slang
{
public const string PluginGuid = "com.biddydev.slang";
public const string PluginName = "Slang";
public const string PluginVersion = "0.4.3";
public const string PluginVersion = "0.4.7";
private Harmony? _harmony;
private static Harmony? _harmony;
private static Regex? _slangSourceCheck = null;
private static Regex SlangSourceCheck
{
get
{
if (_slangSourceCheck is null)
{
_slangSourceCheck = new Regex(@"[;{}()]|\b(let|fn|device)\b|\/\/");
}
return _slangSourceCheck;
}
}
public static bool IsSlangSource(ref string input)
{
return SlangSourceCheck.IsMatch(input);
}
private void Awake()
public void Awake()
{
L.SetLogger(Logger);
this._harmony = new Harmony(PluginGuid);
_harmony = new Harmony(PluginGuid);
// If we failed to load the compiler, bail from the rest of the patches. It won't matter,
// as the compiler itself has failed to load.
if (!Marshal.Init())
{
L.Error("Marshal failed to init");
return;
}
this._harmony.PatchAll();
_harmony.PatchAll();
L.Debug("Ran Harmony patches");
}
public void OnDestroy()
{
Marshal.Destroy();
_harmony?.UnpatchSelf();
L.Debug("Cleaned up Harmony patches");
}
}
}

302
docs/builtins.md Normal file
View File

@@ -0,0 +1,302 @@
# Built-in Functions
<!--toc:start-->
- [Built-in Functions](#built-in-functions)
- [System Functions](#system-functions)
- [`yield()`](#yield)
- [`sleep(ticks)`](#sleepticks)
- [`hash(prefabName)`](#hashprefabname)
- [Device I/O Functions](#device-io-functions)
- [Reading from Devices](#reading-from-devices)
- [Load from device](#load-from-device)
- [Load From Device Batched](#load-from-device-batched)
- [Load From Device Batched Named](#load-from-device-batched-named)
- [Load Slot](#load-slot)
- [Load Reagent](#load-reagent)
- [Writing to Devices](#writing-to-devices)
- [Set On Device](#set-on-device)
- [Set On Device Batched](#set-on-device-batched)
- [Set On Device Batched Named](#set-on-device-batched-named)
- [Set Slot](#set-slot)
- [Math Functions](#math-functions)
- [Trigonometric Functions](#trigonometric-functions)
- [Trig Example](#trig-example)
- [Rounding Functions](#rounding-functions)
- [Rounding Example](#rounding-example)
- [Other Math Functions](#other-math-functions)
- [Math Example](#math-example)
- [See Also](#see-also)
<!--toc:end-->
Slang provides built-in functions for device I/O and mathematical operations.
These map directly to IC10 instructions.
## System Functions
### `yield()`
Pauses execution for exactly one game tick.
```rust
yield();
```
**IC10:** `yield`
---
### `sleep(ticks)`
Pauses execution for the specified number of ticks.
```rust
sleep(10); // Sleep for 10 ticks
```
**IC10:** `sleep ticks`
---
### `hash(prefabName)`
Computes the in-game hash for a prefab name. The hash is computed at compile
time and no runtime code is generated.
```rust
const AC_HASH = hash("StructureAirConditioner");
```
**Note:** This is different from IC10's `hash` instruction, which computes the
hash at runtime.
```rust
setBatched(AC_HASH, "On", 0);
```
**IC10:** `sb -2087593337 On 0` (no hash computation at runtime)
---
## Device I/O Functions
### Reading from Devices
#### Load from device
`load(device, property)` / `l(device, property)`
Loads a property value from a device:
```rust
let temp = load(sensor, "Temperature");
let temp = l(sensor, "Temperature");
// Preferred: use dot notation
let temp = sensor.Temperature;
```
**IC10:** `l r? d? var`
---
#### Load From Device Batched
`loadBatched(deviceHash, property, batchMode)` / `lb(...)`
Loads a property from all devices matching a hash, aggregated by batch mode:
```rust
const SENSOR = hash("StructureGasSensor");
let avgTemp = loadBatched(SENSOR, "Temperature", "Average");
let maxTemp = lb(SENSOR, "Temperature", "Maximum");
```
**Batch Modes:** `"Average"`, `"Sum"`, `"Minimum"`, `"Maximum"`
**IC10:** `lb r? deviceHash logicType batchMode`
---
#### Load From Device Batched Named
`loadBatchedNamed(deviceHash, nameHash, property, batchMode)` / `lbn(...)`
Loads a property from devices matching both device hash and name hash:
```rust
const SENSOR_HASH = hash("StructureGasSensor");
const SENSOR_NAME_HASH = hash("Outdoor Gas Sensor");
let avgTemp = loadBatchedNamed(SENSOR_HASH, SENSOR_NAME_HASH, "Temperature", "Average");
let maxTemp = lbn(SENSOR_HASH, SENSOR_NAME_HASH, "Temperature", "Maximum");
```
**IC10:** `lbn r? deviceHash nameHash logicType batchMode`
**Note:** This function is useful when a script interfaces with a lot of
devices, as it allows for arbitrary device access without limited to the 6 `dx` pins.
---
#### Load Slot
`loadSlot(device, slotIndex, property)` / `ls(...)`
Loads a slot property from a device:
```rust
let occupied = loadSlot(sorter, 0, "Occupied");
let occupied = ls(sorter, 0, "Occupied");
```
**IC10:** `ls r? d? slotIndex logicSlotType`
---
#### Load Reagent
`loadReagent(device, reagentMode, reagentHash)` / `lr(...)`
Loads reagent information from a device:
```rust
let amount = loadReagent(furnace, "Contents", reagentHash);
let amount = lr(furnace, "Contents", reagentHash);
```
**IC10:** `lr r? d? reagentMode reagentHash`
---
### Writing to Devices
#### Set On Device
`set(device, property, value)` / `s(...)`
Sets a property on a device:
```rust
set(valve, "On", true);
s(valve, "On", true);
// Preferred: use dot notation
valve.On = true;
```
**IC10:** `s d? logicType r?`
---
#### Set On Device Batched
`setBatched(deviceHash, property, value)` / `sb(...)`
Sets a property on all devices matching a hash:
```rust
const LIGHT_HASH = hash("StructureWallLight");
setBatched(LIGHT_HASH, "On", true);
sb(LIGHT_HASH, "On", true);
```
**IC10:** `sb deviceHash logicType r?`
**Note:** This function is useful when a script interfaces with a lot of devices,
as it allows for arbitrary device access without limited to the 6 `dx` pins.
---
#### Set On Device Batched Named
`setBatchedNamed(deviceHash, nameHash, property, value)` / `sbn(...)`
Sets a property on devices matching both device hash and name hash:
```rust
const SENSOR_HASH = hash("StructureGasSensor");
const SENSOR_NAME_HASH = hash("Outdoor Gas Sensor");
setBatchedNamed(SENSOR_HASH, SENSOR_NAME_HASH, "On", true);
sbn(SENSOR_HASH, SENSOR_NAME_HASH, "On", true);
```
**IC10:** `sbn deviceHash nameHash logicType r?`
---
#### Set Slot
`setSlot(device, slotIndex, property, value)` / `ss(...)`
Sets a slot property on a device:
```rust
setSlot(sorter, 0, "Open", true);
ss(sorter, 0, "Open", true);
```
**IC10:** `ss d? slotIndex logicSlotType r?`
---
## Math Functions
All math functions accept numbers, variables, or expressions as arguments.
### Trigonometric Functions
| Function | Description | IC10 |
| ------------- | ---------------------------- | ------- |
| `sin(x)` | Sine of angle in radians | `sin` |
| `cos(x)` | Cosine of angle in radians | `cos` |
| `tan(x)` | Tangent of angle in radians | `tan` |
| `asin(x)` | Arc sine, returns radians | `asin` |
| `acos(x)` | Arc cosine, returns radians | `acos` |
| `atan(x)` | Arc tangent, returns radians | `atan` |
| `atan2(y, x)` | Two-argument arc tangent | `atan2` |
#### Trig Example
```rust
let angle = atan2(y, x);
let sineValue = sin(angle);
```
### Rounding Functions
| Function | Description | IC10 |
| ---------- | ----------------------------- | ------- |
| `ceil(x)` | Round up to nearest integer | `ceil` |
| `floor(x)` | Round down to nearest integer | `floor` |
| `trunc(x)` | Remove decimal portion | `trunc` |
| `abs(x)` | Absolute value | `abs` |
#### Rounding Example
```rust
let rounded = floor(3.7); // 3
let positive = abs(-5); // 5
```
### Other Math Functions
| Function | Description | IC10 |
| ----------- | ----------------------------- | ------ |
| `sqrt(x)` | Square root | `sqrt` |
| `log(x)` | Natural logarithm | `log` |
| `max(a, b)` | Maximum of two values | `max` |
| `min(a, b)` | Minimum of two values | `min` |
| `rand()` | Random number between 0 and 1 | `rand` |
#### Math Example
```rust
let root = sqrt(16); // 4
let bigger = max(a, b);
let randomVal = rand();
```
## See Also
- [Language Reference](language-reference.md) — Complete syntax guide
- [Examples](examples.md) — Real-world code samples

254
docs/examples.md Normal file
View File

@@ -0,0 +1,254 @@
# Examples
Real-world Slang programs demonstrating common patterns.
## Temperature Control
Basic thermostat that controls an air conditioner based on room temperature:
```rust
device ac = "db";
device roomGasSensor = "d0";
const TARGET_TEMP = 22c;
const HYSTERESIS = 1;
loop {
yield();
let temp = roomGasSensor.Temperature;
if (temp > TARGET_TEMP + HYSTERESIS) {
ac.On = true;
} else if (temp < TARGET_TEMP - HYSTERESIS) {
ac.On = false;
}
}
```
**Note:** The IC10 chip is assumed to be inserted in the air conditioner's IC slot.
---
## Two-Axis Solar Panel Tracking
Handles two-axis solar panel tracking based on the sun's position:
```rust
device sensor = "d0";
const H_PANELS = hash("StructureSolarPanelDual");
loop {
setBatched(H_PANELS, "Horizontal", sensor.Horizontal);
setBatched(H_PANELS, "Vertical", sensor.Vertical + 90);
yield();
}
```
**Note:** Assumes the daylight sensor is mounted with its port looking 90
degrees east of the solar panel's data port, an offset can be added on the
horizontal angle if needed.
---
## Day/Night Lighting
Controls grow lights during the day and ambient lights at night:
```rust
device greenhouseSensor = "d0";
const daylightSensor = hash("StructureDaylightSensor");
const growLight = hash("StructureGrowLight");
const wallLight = hash("StructureLightLong");
loop {
yield();
let solarAngle = lb(daylightSensor, "SolarAngle", "Average");
let isDaylight = solarAngle < 90;
sb(growLight, "On", isDaylight);
sb(wallLight, "On", !isDaylight);
}
```
---
## Pressure Relief Valve
Controls a volume pump based on pressure readings for emergency pressure relief:
```rust
device volumePump = "d0";
device pipeSensor = "d1";
const MAX_PRESSURE = 10_000;
const R = 8.314;
loop {
yield();
let pressure = pipeSensor.Pressure;
if (pressure > MAX_PRESSURE) {
// Use PV=nRT to calculate the amount of mols we need to move
// n = PV / RT
let molsToMove = (pressure - MAX_PRESSURE) *
pipeSensor.Volume / (R * pipeSensor.Temperature);
// V = nRT / P
let setting = molsToMove * R * pipeSensor.Temperature / pressure;
volumePump.Setting = setting;
volumePump.On = true;
} else {
volumePump.On = false;
}
}
```
---
## Greenhouse Environment Controller
Complete greenhouse control with pressure, temperature, and lighting:
```rust
device self = "db";
device emergencyRelief = "d0";
device greenhouseSensor = "d1";
device recycleValve = "d2";
const MAX_INTERIOR_PRESSURE = 80;
const MAX_INTERIOR_TEMP = 28c;
const MIN_INTERIOR_PRESSURE = 75;
const MIN_INTERIOR_TEMP = 25c;
const daylightSensor = 1076425094;
const growLight = hash("StructureGrowLight");
const wallLight = hash("StructureLightLong");
const lightRound = hash("StructureLightRound");
let shouldPurge = false;
loop {
yield();
let interiorPress = greenhouseSensor.Pressure;
let interiorTemp = greenhouseSensor.Temperature;
shouldPurge = (
interiorPress > MAX_INTERIOR_PRESSURE ||
interiorTemp > MAX_INTERIOR_TEMP
) || shouldPurge;
emergencyRelief.On = shouldPurge;
recycleValve.On = !shouldPurge;
if (
shouldPurge && (
interiorPress < MIN_INTERIOR_PRESSURE &&
interiorTemp < MIN_INTERIOR_TEMP
)
) {
shouldPurge = false;
}
let solarAngle = lb(daylightSensor, "SolarAngle", "Average");
let isDaylight = solarAngle < 90;
sb(growLight, "On", isDaylight);
sb(wallLight, "On", !isDaylight);
sb(lightRound, "On", !isDaylight);
}
```
---
## Advanced Furnace Pressure Control
Automates multi-furnace pump control based on dial setting for pressure target:
```rust
const FURNACE1 = 1234;
const DIAL1 = 1123;
const ANALYZER1 = 1223;
const FURNACE2 = 1235;
const DIAL2 = 1124;
const ANALYZER2 = 1224;
const FURNACE3 = 1236;
const DIAL3 = 1124;
const ANALYZER3 = 1225;
const R = 8.314;
fn handleFurnace(furnace, dial, analyzer) {
let pressure = furnace.Pressure;
let targetPressure = max(dial.Setting, 0.1) * 1000;
if (abs(targetPressure - pressure) <= 0.1) {
furnace.On = false;
return;
}
let molsToMove = max(furnace.TotalMoles, 1) * (
(targetPressure / pressure) - 1
);
// V = nRT / P
if (molsToMove > 0) {
// Calculate volume required
if (analyzer.Pressure == 0) {
// No more gas to add
furnace.On = false;
return;
}
let volume = molsToMove * R * analyzer.Temperature / analyzer.Pressure;
furnace.On = true;
furnace.SettingOutput = 0;
furnace.SettingInput = volume;
return;
}
// Calculate volume required
let volume = (-molsToMove) * R * furnace.Temperature / pressure;
furnace.On = true;
furnace.SettingInput = 0;
furnace.SettingOutput = volume;
return;
}
loop {
yield();
handleFurnace(FURNACE1, DIAL1, ANALYZER1);
handleFurnace(FURNACE2, DIAL2, ANALYZER2);
handleFurnace(FURNACE3, DIAL3, ANALYZER3);
}
```
**Note:** This example does not handle edge cases such as insufficient gas in
the input network or overfilling the furnace/pipe network.
---
## Common Patterns
### Waiting for a Condition
```rust
fn waitForDeviceToTurnOff(device) {
while (device.On) {
yield();
}
}
```
## See Also
- [Getting Started](getting-started.md) — First steps with Slang
- [Language Reference](language-reference.md) — Complete syntax guide
- [Built-in Functions](builtins.md) — System calls and math functions

99
docs/getting-started.md Normal file
View File

@@ -0,0 +1,99 @@
# Getting Started
<!--toc:start-->
- [Getting Started](#getting-started)
- [Program Structure](#program-structure)
- [The `yield()` Function](#the-yield-function)
- [Your First Program](#your-first-program)
- [Explanation](#explanation)
- [Comments](#comments)
- [See Also](#see-also)
<!--toc:end-->
This guide covers the basics of writing your first Slang program.
## Program Structure
A Slang program consists of top-level declarations and a main loop:
```rust
// Device declarations
device self = "db";
device sensor = "d0";
// Constants
const THRESHOLD = 100;
// Variables
let counter = 0;
// Main program loop
loop {
yield();
// Your logic here
}
```
## The `yield()` Function
IC10 programs run continuously. The `yield()` function pauses execution for one
game tick, preventing the script from consuming excessive resources.
**Important:** You should always include `yield()` in your main loop unless you
know what you're doing.
```rust
loop {
yield(); // Recommended!
// ...
}
```
## Your First Program
Here's a simple program that turns on a light when a gas sensor detects low
pressure:
```rust
device gasSensor = "d0";
device light = "d1";
const LOW_PRESSURE = 50;
loop {
yield();
light.On = gasSensor.Pressure < LOW_PRESSURE;
}
```
### Explanation
1. `device gasSensor = "d0"` — Binds the device at port `d0` to the name
`gasSensor`
2. `device light = "d1"` — Binds the device at port `d1` to the name `light`
3. `const LOW_PRESSURE = 50` — Defines a compile-time constant
4. `loop { ... }` — Creates an infinite loop
5. `yield()` — Pauses for one tick
6. `light.On = gasSensor.Pressure < LOW_PRESSURE` — Reads the pressure and sets
the light state
## Comments
Slang supports single-line comments and documentation comments:
```rust
// This is a regular comment
/// This is a documentation comment
/// It can span multiple lines
fn myFunction() {
// ...
}
```
## See Also
- [Language Reference](language-reference.md) — Complete syntax guide
- [Built-in Functions](builtins.md) — Available system calls
- [Examples](examples.md) — Real-world programs and patterns

339
docs/language-reference.md Normal file
View File

@@ -0,0 +1,339 @@
# Language Reference
<!--toc:start-->
- [Language Reference](#language-reference)
- [Literals](#literals)
- [Numbers](#numbers)
- [Temperature Literals](#temperature-literals)
- [Booleans](#booleans)
- [Strings](#strings)
- [Variables](#variables)
- [`let` - Mutable Variables](#let-mutable-variables)
- [`const` - Constants](#const-constants)
- [Device Declarations](#device-declarations)
- [Device Property Access](#device-property-access)
- [Device Property Assignment](#device-property-assignment)
- [Operators](#operators)
- [Arithmetic Operators](#arithmetic-operators)
- [Comparison Operators](#comparison-operators)
- [Logical Operators](#logical-operators)
- [Ternary Operator](#ternary-operator)
- [Operator Precedence](#operator-precedence)
- [Control Flow](#control-flow)
- [`if` / `else`](#if-and-else)
- [`loop`](#loop)
- [`while`](#while)
- [`break`](#break)
- [`continue`](#continue)
- [Functions](#functions)
- [Declaration](#declaration)
- [Invocation](#invocation)
- [Return Values](#return-values)
- [Parentheses for Grouping](#parentheses-for-grouping)
- [See Also](#see-also)
<!--toc:end-->
Complete syntax reference for the Slang programming language.
## Literals
### Numbers
Numbers can be integers or decimals. Underscores are allowed as visual
separators:
```rust
const integer = 42; // Integer
const decimal = 3.14; // Decimal
const million = 1_000_000; // Integer with separators
const decimalSeparators = 5_000.50; // Decimal with separators
```
### Temperature Literals
Append a unit suffix to specify temperature. Values are automatically converted
to Kelvin at compile time:
| Suffix | Unit | Example |
| ------ | ---------- | ------- |
| `c` | Celsius | `20c` |
| `f` | Fahrenheit | `68f` |
| `k` | Kelvin | `293k` |
```rust
const ROOM_TEMP = 20c; // Converts to 293.15 Kelvin
const FREEZING = 32f; // Converts to 273.15 Kelvin
const ABSOLUTE1 = 0k; // Already in Kelvin
const ABSOLUTE2 = 0; // Assumed to be in Kelvin
```
### Booleans
Booleans compile to integer values `1` and `0` in IC10.
```rust
device ac = "d0";
ac.Mode = false;
ac.On = true;
```
### Strings
Strings use double or single quotes. They are primarily used for prefab and
name hashes.
```rust
const AC_HASH = hash("StructureAirConditioner");
const AC_NAME_HASH = hash("Greenhouse Air Conditioner");
```
## Variables
### `let` Mutable Variables
Declares a variable that can be reassigned:
```rust
let counter = 0;
// ...
counter = counter + 1;
```
### `const` Constants
Declares a compile-time constant. Constants are inlined and do not consume
registers:
```rust
const MAX_PRESSURE = 10_000;
const DOOR_HASH = hash("StructureCompositeDoor");
```
Constants support the `hash()` function for compile-time hash computation.
## Device Declarations
The `device` keyword binds a device port or reference ID to a named variable:
```rust
device self = "db"; // IC housing, or device the IC is plugged into (eg. an AC)
device sensor = "d0"; // Device at port d0
device valve = "d1"; // Device at port d1
device ac1 = "$3FC"; // Device with reference ID $3FC (hexadecimal 1020)
device ac2 = "1020"; // Device with reference ID 1020 (decimal)
```
**Note:** Reference IDs can be found in-game using the Configuration cartridge.
### Device Property Access
Read device properties using dot notation:
```rust
let temp = sensor.Temperature;
let pressure = sensor.Pressure;
let isOn = valve.On;
```
### Device Property Assignment
Write to device properties using dot notation:
```rust
valve.On = true;
valve.Setting = 100;
```
## Operators
### Arithmetic Operators
| Operator | Description | Example |
| -------- | -------------- | -------- |
| `+` | Addition | `a + b` |
| `-` | Subtraction | `a - b` |
| `*` | Multiplication | `a * b` |
| `/` | Division | `a / b` |
| `%` | Modulo | `a % b` |
| `**` | Exponentiation | `a ** b` |
| `-` | Negation | `-a` |
### Comparison Operators
| Operator | Description | Example |
| -------- | --------------------- | -------- |
| `==` | Equal | `a == b` |
| `!=` | Not equal | `a != b` |
| `<` | Less than | `a < b` |
| `>` | Greater than | `a > b` |
| `<=` | Less than or equal | `a <= b` |
| `>=` | Greater than or equal | `a >= b` |
### Logical Operators
| Operator | Description | Example |
| -------- | ----------- | ---------- |
| `&&` | Logical AND | `a && b` |
| `\|\|` | Logical OR | `a \|\| b` |
| `!` | Logical NOT | `!a` |
### Ternary Operator
Conditional expressions using `?` and `:`:
```rust
let result = condition ? valueIfTrue : valueIfFalse;
```
### Operator Precedence
Operators are evaluated in the following order, from highest to lowest
precedence:
| Precedence | Operator(s) | Description |
| ---------- | ----------------- | -------------------------------- |
| 1 | `()` `.` | Grouping, Property access |
| 2 | `!` `-` | Logical NOT, Negation |
| 3 | `**` | Exponentiation |
| 4 | `*` `/` `%` | Multiplication, Division, Modulo |
| 5 | `+` `-` | Addition, Subtraction |
| 6 | `<` `<=` `>` `>=` | Comparison |
| 7 | `==` `!=` | Equality |
| 8 | `&&` | Logical AND |
| 9 | `\|\|` | Logical OR |
| 10 | `?:` | Ternary conditional |
| 11 | `=` | Assignment |
Use parentheses to override precedence:
```rust
let result = (20 + 10) * 5;
```
## Control Flow
### if and else
Conditional branching:
```rust
if (tank.Temperature > 30c) {
ac.On = true;
} else {
ac.On = false;
}
```
### `loop`
Infinite loop that runs until `break`:
```rust
loop {
yield();
// Loop body
if (condition) {
break; // Exit the loop
}
}
```
### `while`
Conditional loop that runs while the condition is true:
```rust
while (counter < 100) {
counter = counter + 1;
yield();
}
```
### `break`
Exits the current loop:
```rust
loop {
yield();
// ...
if (done) {
break;
}
}
```
### `continue`
Skips to the next iteration of the current loop:
```rust
loop {
yield();
if (shouldSkip) {
continue;
}
// This code is skipped when shouldSkip is true
// ...
}
```
## Functions
**Warning:** Functions are currently experimental and may produce suboptimal code.
### Declaration
```rust
fn functionName(arg1, arg2) {
// Function body
return arg1 + arg2;
}
```
### Invocation
```rust
let result = functionName(10, 20);
```
### Return Values
Use `return` to exit a function and optionally return a value:
```rust
fn calculate(x) {
if (x < 0) {
return 0; // Early return
}
return x * 2;
}
fn doWork() {
// No return value
return;
}
```
## Parentheses for Grouping
Use parentheses to control operator precedence:
```rust
let result = (a + b) * c;
let complex = (
temp > 0c &&
stress < 50 &&
(pressure < 10_000 || temp > 20c)
);
```
## See Also
- [Getting Started](getting-started.md) — First steps with Slang
- [Built-in Functions](builtins.md) — System calls and math functions
- [Examples](examples.md) — Real-world code samples

View File

@@ -930,7 +930,7 @@ checksum = "e3a9fe34e3e7a50316060351f37187a3f546bce95496156754b601a5fa71b76e"
[[package]]
name = "slang"
version = "0.4.3"
version = "0.4.7"
dependencies = [
"anyhow",
"clap",

View File

@@ -1,6 +1,6 @@
[package]
name = "slang"
version = "0.4.3"
version = "0.4.7"
edition = "2021"
[workspace]

View File

@@ -168,3 +168,28 @@ fn test_const_hash_expr() -> anyhow::Result<()> {
);
Ok(())
}
#[test]
fn test_declaration_is_const() -> anyhow::Result<()> {
let compiled = compile! {
debug
r#"
const MAX = 100;
let max = MAX;
"#
};
assert_eq!(
compiled,
indoc! {
"
j main
main:
move r8 100
"
}
);
Ok(())
}

View File

@@ -47,3 +47,4 @@ mod logic_expression;
mod loops;
mod math_syscall;
mod syscall;
mod tuple_literals;

View File

@@ -0,0 +1,950 @@
#[cfg(test)]
mod test {
use indoc::indoc;
use pretty_assertions::assert_eq;
#[test]
fn test_tuple_literal_declaration() -> anyhow::Result<()> {
let compiled = compile!(
debug
r#"
let (x, y) = (1, 2);
"#
);
assert_eq!(
compiled,
indoc! {
"
j main
main:
move r8 1
move r9 2
"
}
);
Ok(())
}
#[test]
fn test_tuple_literal_declaration_with_underscore() -> anyhow::Result<()> {
let compiled = compile!(
debug
r#"
let (x, _) = (1, 2);
"#
);
assert_eq!(
compiled,
indoc! {
"
j main
main:
move r8 1
"
}
);
Ok(())
}
#[test]
fn test_tuple_literal_assignment() -> anyhow::Result<()> {
let compiled = compile!(
debug
r#"
let x = 0;
let y = 0;
(x, y) = (5, 10);
"#
);
assert_eq!(
compiled,
indoc! {
"
j main
main:
move r8 0
move r9 0
move r8 5
move r9 10
"
}
);
Ok(())
}
#[test]
fn test_tuple_literal_with_variables() -> anyhow::Result<()> {
let compiled = compile!(
debug
r#"
let a = 42;
let b = 99;
let (x, y) = (a, b);
"#
);
assert_eq!(
compiled,
indoc! {
"
j main
main:
move r8 42
move r9 99
move r10 r8
move r11 r9
"
}
);
Ok(())
}
#[test]
fn test_tuple_literal_three_elements() -> anyhow::Result<()> {
let compiled = compile!(
debug
r#"
let (x, y, z) = (1, 2, 3);
"#
);
assert_eq!(
compiled,
indoc! {
"
j main
main:
move r8 1
move r9 2
move r10 3
"
}
);
Ok(())
}
#[test]
fn test_tuple_literal_assignment_with_underscore() -> anyhow::Result<()> {
let compiled = compile!(
debug
r#"
let i = 0;
let x = 123;
(i, _) = (456, 789);
"#
);
assert_eq!(
compiled,
indoc! {
"
j main
main:
move r8 0
move r9 123
move r8 456
"
}
);
Ok(())
}
#[test]
fn test_tuple_return_simple() -> anyhow::Result<()> {
let compiled = compile!(
debug
r#"
fn getPair() {
return (10, 20);
};
let (x, y) = getPair();
"#
);
assert_eq!(
compiled,
indoc! {
"
j main
getPair:
move r15 sp
push ra
push 10
push 20
move r15 1
sub r0 sp 3
get ra db r0
j ra
main:
jal getPair
pop r9
pop r8
move sp r15
"
}
);
Ok(())
}
#[test]
fn test_tuple_return_with_underscore() -> anyhow::Result<()> {
let compiled = compile!(
debug
r#"
fn getPair() {
return (5, 15);
};
let (x, _) = getPair();
"#
);
assert_eq!(
compiled,
indoc! {
"
j main
getPair:
move r15 sp
push ra
push 5
push 15
move r15 1
sub r0 sp 3
get ra db r0
j ra
main:
jal getPair
pop r0
pop r8
move sp r15
"
}
);
Ok(())
}
#[test]
fn test_tuple_return_three_elements() -> anyhow::Result<()> {
let compiled = compile!(
debug
r#"
fn getTriple() {
return (1, 2, 3);
};
let (a, b, c) = getTriple();
"#
);
assert_eq!(
compiled,
indoc! {
"
j main
getTriple:
move r15 sp
push ra
push 1
push 2
push 3
move r15 1
sub r0 sp 4
get ra db r0
j ra
main:
jal getTriple
pop r10
pop r9
pop r8
move sp r15
"
}
);
Ok(())
}
#[test]
fn test_tuple_return_assignment() -> anyhow::Result<()> {
let compiled = compile!(
debug
r#"
fn getPair() {
return (42, 84);
};
let i = 1;
let j = 2;
(i, j) = getPair();
"#
);
assert_eq!(
compiled,
indoc! {
"
j main
getPair:
move r15 sp
push ra
push 42
push 84
move r15 1
sub r0 sp 3
get ra db r0
j ra
main:
move r8 1
move r9 2
jal getPair
pop r9
pop r8
move sp r15
"
}
);
Ok(())
}
#[test]
fn test_tuple_return_mismatch() -> anyhow::Result<()> {
let errors = compile!(
result
r#"
fn doSomething() {
return (1, 2, 3);
};
let (x, y) = doSomething();
"#
);
// Should have exactly one error about tuple size mismatch
assert_eq!(errors.len(), 1);
// Check for the specific TupleSizeMismatch error
match &errors[0] {
crate::Error::TupleSizeMismatch(expected_size, actual_count, _) => {
assert_eq!(*expected_size, 3);
assert_eq!(*actual_count, 2);
}
e => panic!("Expected TupleSizeMismatch error, got: {:?}", e),
}
Ok(())
}
#[test]
fn test_tuple_return_called_by_non_tuple_return() -> anyhow::Result<()> {
let compiled = compile!(
debug
r#"
fn doSomething() {
return (1, 2);
};
fn doSomethingElse() {
let (x, y) = doSomething();
return y;
};
let returnedValue = doSomethingElse();
"#
);
assert_eq!(
compiled,
indoc! {
"
j main
doSomething:
move r15 sp
push ra
push 1
push 2
move r15 1
sub r0 sp 3
get ra db r0
j ra
doSomethingElse:
push ra
jal doSomething
pop r9
pop r8
move sp r15
move r15 r9
j __internal_L2
__internal_L2:
pop ra
j ra
main:
jal doSomethingElse
move r8 r15
"
}
);
Ok(())
}
#[test]
fn test_non_tuple_return_called_by_tuple_return() -> anyhow::Result<()> {
let compiled = compile!(
debug
r#"
fn getValue() {
return 42;
};
fn getTuple() {
let x = getValue();
return (x, x);
};
let (a, b) = getTuple();
"#
);
assert_eq!(
compiled,
indoc! {
"
j main
getValue:
push ra
move r15 42
j __internal_L1
__internal_L1:
pop ra
j ra
getTuple:
move r15 sp
push ra
jal getValue
move r8 r15
push r8
push r8
move r15 1
sub r0 sp 3
get ra db r0
j ra
main:
jal getTuple
pop r9
pop r8
move sp r15
"
}
);
Ok(())
}
#[test]
fn test_tuple_literal_size_mismatch() -> anyhow::Result<()> {
let errors = compile!(
result
r#"
let (x, y) = (1, 2, 3);
"#
);
// Should have exactly one error about tuple size mismatch
assert_eq!(errors.len(), 1);
assert!(matches!(
errors[0],
crate::Error::TupleSizeMismatch(_, _, _)
));
Ok(())
}
#[test]
fn test_multiple_tuple_returns_in_function() -> anyhow::Result<()> {
let compiled = compile!(
debug
r#"
fn getValue(x) {
if (x) {
return (1, 2);
} else {
return (3, 4);
}
};
let (a, b) = getValue(1);
"#
);
assert_eq!(
compiled,
indoc! {
"
j main
getValue:
pop r8
move r15 sp
push ra
beqz r8 __internal_L3
push 1
push 2
move r15 0
sub r0 sp 3
get ra db r0
j ra
sub sp sp 2
j __internal_L2
__internal_L3:
push 3
push 4
move r15 0
sub r0 sp 3
get ra db r0
j ra
sub sp sp 2
__internal_L2:
main:
push 1
jal getValue
pop r9
pop r8
move sp r15
"
},
);
Ok(())
}
#[test]
fn test_tuple_return_with_expression() -> anyhow::Result<()> {
let compiled = compile!(
debug
r#"
fn add(x, y) {
return (x, y);
};
let (a, b) = add(5, 10);
"#
);
assert_eq!(
compiled,
indoc! {
"
j main
add:
pop r8
pop r9
move r15 sp
push ra
push r9
push r8
move r15 1
sub r0 sp 3
get ra db r0
j ra
main:
push 5
push 10
jal add
pop r9
pop r8
move sp r15
"
}
);
Ok(())
}
#[test]
fn test_nested_function_tuple_calls() -> anyhow::Result<()> {
let compiled = compile!(
debug
r#"
fn inner() {
return (1, 2);
};
fn outer() {
let (x, y) = inner();
return (y, x);
};
let (a, b) = outer();
"#
);
assert_eq!(
compiled,
indoc! {
"
j main
inner:
move r15 sp
push ra
push 1
push 2
move r15 1
sub r0 sp 3
get ra db r0
j ra
outer:
move r15 sp
push ra
jal inner
pop r9
pop r8
move sp r15
push r9
push r8
move r15 1
sub r0 sp 3
get ra db r0
j ra
main:
jal outer
pop r9
pop r8
move sp r15
"
}
);
Ok(())
}
#[test]
fn test_tuple_literal_with_constant_expressions() -> anyhow::Result<()> {
let compiled = compile!(
debug
r#"
let (a, b) = (1 + 2, 3 * 4);
"#
);
assert_eq!(
compiled,
indoc! {
"
j main
main:
move r8 3
move r9 12
"
}
);
Ok(())
}
#[test]
fn test_tuple_literal_with_variable_expressions() -> anyhow::Result<()> {
let compiled = compile!(
debug
r#"
let x = 5;
let y = 10;
let (a, b) = (x + 1, y * 2);
"#
);
assert_eq!(
compiled,
indoc! {
"
j main
main:
move r8 5
move r9 10
add r1 r8 1
move r10 r1
mul r2 r9 2
move r11 r2
"
}
);
Ok(())
}
#[test]
fn test_tuple_assignment_with_expressions() -> anyhow::Result<()> {
let compiled = compile!(
debug
r#"
let a = 0;
let b = 0;
let x = 5;
(a, b) = (x + 1, x * 2);
"#
);
assert_eq!(
compiled,
indoc! {
"
j main
main:
move r8 0
move r9 0
move r10 5
add r1 r10 1
move r8 r1
mul r2 r10 2
move r9 r2
"
}
);
Ok(())
}
#[test]
fn test_tuple_literal_with_function_calls() -> anyhow::Result<()> {
let compiled = compile!(
debug
r#"
fn getValue() { return 42; };
fn getOther() { return 99; };
let (a, b) = (getValue(), getOther());
"#
);
assert_eq!(
compiled,
indoc! {
"
j main
getValue:
push ra
move r15 42
j __internal_L1
__internal_L1:
pop ra
j ra
getOther:
push ra
move r15 99
j __internal_L2
__internal_L2:
pop ra
j ra
main:
push r8
jal getValue
pop r8
move r1 r15
move r8 r1
push r8
push r9
jal getOther
pop r9
pop r8
move r2 r15
move r9 r2
"
}
);
Ok(())
}
#[test]
fn test_tuple_with_logical_expressions() -> anyhow::Result<()> {
let compiled = compile!(
debug
r#"
let x = 1;
let y = 0;
let (a, b) = (x && y, x || y);
"#
);
assert_eq!(
compiled,
indoc! {
"
j main
main:
move r8 1
move r9 0
and r1 r8 r9
move r10 r1
or r2 r8 r9
move r11 r2
"
}
);
Ok(())
}
#[test]
fn test_tuple_with_comparison_expressions() -> anyhow::Result<()> {
let compiled = compile!(
debug
r#"
let x = 5;
let y = 10;
let (a, b) = (x > y, x < y);
"#
);
assert_eq!(
compiled,
indoc! {
"
j main
main:
move r8 5
move r9 10
sgt r1 r8 r9
move r10 r1
slt r2 r8 r9
move r11 r2
"
}
);
Ok(())
}
#[test]
fn test_tuple_with_device_property_access() -> anyhow::Result<()> {
let compiled = compile!(
debug
r#"
device sensor = "d0";
device display = "d1";
let (temp, pressure) = (sensor.Temperature, sensor.Pressure);
"#
);
assert_eq!(
compiled,
indoc! {
"
j main
main:
l r1 d0 Temperature
move r8 r1
l r2 d0 Pressure
move r9 r2
"
}
);
Ok(())
}
#[test]
fn test_tuple_with_device_property_and_function_call() -> anyhow::Result<()> {
let compiled = compile!(
debug
r#"
device self = "db";
fn getY() {
return 42;
}
let (x, y) = (self.Setting, getY());
"#
);
assert_eq!(
compiled,
indoc! {
"
j main
getY:
push ra
move r15 42
j __internal_L1
__internal_L1:
pop ra
j ra
main:
l r1 db Setting
move r8 r1
push r8
push r9
jal getY
pop r9
pop r8
move r2 r15
move r9 r2
"
}
);
Ok(())
}
#[test]
fn test_tuple_with_function_call_expressions() -> anyhow::Result<()> {
let compiled = compile!(
debug
r#"
fn getValue() { return 10; }
fn getOther() { return 20; }
let (a, b) = (getValue() + 5, getOther() * 2);
"#
);
assert_eq!(
compiled,
indoc! {
"
j main
getValue:
push ra
move r15 10
j __internal_L1
__internal_L1:
pop ra
j ra
getOther:
push ra
move r15 20
j __internal_L2
__internal_L2:
pop ra
j ra
main:
push r8
jal getValue
pop r8
move r1 r15
add r2 r1 5
move r8 r2
push r8
push r9
jal getOther
pop r9
pop r8
move r3 r15
mul r4 r3 2
move r9 r4
"
}
);
Ok(())
}
}

View File

@@ -9,7 +9,8 @@ use parser::{
AssignmentExpression, BinaryExpression, BlockExpression, ConstDeclarationExpression,
DeviceDeclarationExpression, Expression, FunctionExpression, IfExpression,
InvocationExpression, Literal, LiteralOr, LiteralOrVariable, LogicalExpression,
LoopExpression, MemberAccessExpression, Spanned, TernaryExpression, WhileExpression,
LoopExpression, MemberAccessExpression, Spanned, TernaryExpression,
TupleAssignmentExpression, TupleDeclarationExpression, WhileExpression,
},
};
use rust_decimal::Decimal;
@@ -63,6 +64,9 @@ pub enum Error<'a> {
#[error("Attempted to re-assign a value to a device const `{0}`")]
DeviceAssignment(Cow<'a, str>, Span),
#[error("Expected a {0}-tuple, but you're trying to destructure into {1} variables")]
TupleSizeMismatch(usize, usize, Span),
#[error("{0}")]
Unknown(String, Option<Span>),
}
@@ -84,7 +88,8 @@ impl<'a> From<Error<'a>> for lsp_types::Diagnostic {
| InvalidDevice(_, span)
| ConstAssignment(_, span)
| DeviceAssignment(_, span)
| AgrumentMismatch(_, span) => Diagnostic {
| AgrumentMismatch(_, span)
| TupleSizeMismatch(_, _, span) => Diagnostic {
range: span.into(),
message: value.to_string(),
severity: Some(DiagnosticSeverity::ERROR),
@@ -142,6 +147,8 @@ pub struct Compiler<'a> {
pub parser: ASTParser<'a>,
function_locations: HashMap<Cow<'a, str>, usize>,
function_metadata: HashMap<Cow<'a, str>, Vec<Cow<'a, str>>>,
function_tuple_return_sizes: HashMap<Cow<'a, str>, usize>, // Track tuple return sizes
current_function_name: Option<Cow<'a, str>>, // Track the function currently being compiled
devices: HashMap<Cow<'a, str>, Cow<'a, str>>,
// This holds the IL code which will be used in the
@@ -155,6 +162,8 @@ pub struct Compiler<'a> {
label_counter: usize,
loop_stack: Vec<(Cow<'a, str>, Cow<'a, str>)>, // Stores (start_label, end_label)
current_return_label: Option<Cow<'a, str>>,
current_return_is_tuple: bool, // Track if the current function returns a tuple
current_function_sp_saved: bool, // Track if we've emitted the SP save for the current function
/// stores (IC10 `line_num`, `Vec<Span>`)
pub source_map: HashMap<usize, Vec<Span>>,
/// Accumulative errors from the compilation process
@@ -176,6 +185,10 @@ impl<'a> Compiler<'a> {
label_counter: 0,
loop_stack: Vec::new(),
current_return_label: None,
current_return_is_tuple: false,
current_function_sp_saved: false,
current_function_name: None,
function_tuple_return_sizes: HashMap::new(),
source_map: HashMap::new(),
errors: Vec::new(),
}
@@ -465,6 +478,14 @@ impl<'a> Compiler<'a> {
temp_name: Some(result_name),
}))
}
Expression::TupleDeclaration(tuple_decl) => {
self.expression_tuple_declaration(tuple_decl.node, scope)?;
Ok(None)
}
Expression::TupleAssignment(tuple_assign) => {
self.expression_tuple_assignment(tuple_assign.node, scope)?;
Ok(None)
}
_ => Err(Error::Unknown(
format!(
"Expression type not yet supported in general expression context: {:?}",
@@ -714,7 +735,12 @@ impl<'a> Compiler<'a> {
Operand::Register(VariableScope::TEMP_STACK_REGISTER)
}
VariableLocation::Constant(_) | VariableLocation::Device(_) => unreachable!(),
VariableLocation::Constant(Literal::Number(num)) => Operand::Number(num.into()),
VariableLocation::Constant(Literal::Boolean(b)) => {
Operand::Number(Number::from(b).into())
}
VariableLocation::Device(_)
| VariableLocation::Constant(Literal::String(_)) => unreachable!(),
};
self.emit_variable_assignment(&var_loc, src)?;
(var_loc, None)
@@ -927,6 +953,504 @@ impl<'a> Compiler<'a> {
Ok(())
}
fn expression_function_invocation_with_invocation(
&mut self,
invoke_expr: &InvocationExpression<'a>,
parent_scope: &mut VariableScope<'a, '_>,
backup_registers: bool,
) -> Result<(), Error<'a>> {
let InvocationExpression { name, arguments } = invoke_expr;
if !self.function_locations.contains_key(name.node.as_ref()) {
self.errors
.push(Error::UnknownIdentifier(name.node.clone(), name.span));
return Ok(());
}
let Some(args) = self.function_metadata.get(name.node.as_ref()) else {
return Err(Error::UnknownIdentifier(name.node.clone(), name.span));
};
if args.len() != arguments.len() {
self.errors
.push(Error::AgrumentMismatch(name.node.clone(), name.span));
return Ok(());
}
let mut stack = VariableScope::scoped(parent_scope);
// Get the list of active registers (may or may not backup)
let active_registers = stack.registers();
// backup all used registers to the stack (unless this is for tuple return handling)
if backup_registers {
for register in &active_registers {
stack.add_variable(
Cow::from(format!("temp_{register}")),
LocationRequest::Stack,
None,
)?;
self.write_instruction(
Instruction::Push(Operand::Register(*register)),
Some(name.span),
)?;
}
}
for arg in arguments {
match &arg.node {
Expression::Literal(spanned_lit) => match &spanned_lit.node {
Literal::Number(num) => {
self.write_instruction(
Instruction::Push(Operand::Number((*num).into())),
Some(spanned_lit.span),
)?;
}
Literal::Boolean(b) => {
self.write_instruction(
Instruction::Push(Operand::Number(Number::from(*b).into())),
Some(spanned_lit.span),
)?;
}
_ => {}
},
Expression::Variable(var_name) => {
let loc = match stack.get_location_of(&var_name.node, Some(var_name.span)) {
Ok(l) => l,
Err(_) => {
self.errors.push(Error::UnknownIdentifier(
var_name.node.clone(),
var_name.span,
));
VariableLocation::Temporary(0)
}
};
match loc {
VariableLocation::Persistant(reg) | VariableLocation::Temporary(reg) => {
self.write_instruction(
Instruction::Push(Operand::Register(reg)),
Some(var_name.span),
)?;
}
VariableLocation::Constant(lit) => {
self.write_instruction(
Instruction::Push(extract_literal(lit, false)?),
Some(var_name.span),
)?;
}
VariableLocation::Stack(stack_offset) => {
self.write_instruction(
Instruction::Sub(
Operand::Register(VariableScope::TEMP_STACK_REGISTER),
Operand::StackPointer,
Operand::Number(stack_offset.into()),
),
Some(var_name.span),
)?;
self.write_instruction(
Instruction::Get(
Operand::Register(VariableScope::TEMP_STACK_REGISTER),
Operand::Device(Cow::from("db")),
Operand::Register(VariableScope::TEMP_STACK_REGISTER),
),
Some(var_name.span),
)?;
self.write_instruction(
Instruction::Push(Operand::Register(
VariableScope::TEMP_STACK_REGISTER,
)),
Some(var_name.span),
)?;
}
VariableLocation::Device(_) => {
self.errors.push(Error::Unknown(
"Device references not supported in function arguments".into(),
Some(var_name.span),
));
}
}
}
_ => {
self.errors.push(Error::Unknown(
"Only literals and variables supported in function arguments".into(),
Some(arg.span),
));
}
}
}
let Some(_location) = self.function_locations.get(&name.node) else {
self.errors
.push(Error::UnknownIdentifier(name.node.clone(), name.span));
return Ok(());
};
self.write_instruction(
Instruction::JumpAndLink(Operand::Label(name.node.clone())),
Some(name.span),
)?;
// pop all registers back (if they were backed up)
if backup_registers {
for register in active_registers.iter().rev() {
self.write_instruction(
Instruction::Pop(Operand::Register(*register)),
Some(name.span),
)?;
}
}
Ok(())
}
fn expression_tuple_declaration(
&mut self,
tuple_decl: TupleDeclarationExpression<'a>,
scope: &mut VariableScope<'a, '_>,
) -> Result<(), Error<'a>> {
let TupleDeclarationExpression { names, value } = tuple_decl;
// Compile the right-hand side expression
// For function calls returning tuples:
// r15 = pointer to beginning of tuple on stack
// r14, r13, ... contain the tuple elements, or they're on the stack
match value.node {
Expression::Invocation(invoke_expr) => {
// Execute the function call
// Tuple values are on the stack, sp points after the last pushed value
// Pop them in reverse order (from end to beginning)
// We don't need to backup registers for tuple returns
self.expression_function_invocation_with_invocation(&invoke_expr, scope, false)?;
// Validate tuple return size matches the declaration
let func_name = &invoke_expr.node.name.node;
if let Some(&expected_size) = self.function_tuple_return_sizes.get(func_name) {
if names.len() != expected_size {
self.errors.push(Error::TupleSizeMismatch(
expected_size,
names.len(),
value.span,
));
}
}
// First pass: allocate variables in order
let mut var_locations = Vec::new();
for name_spanned in names.iter() {
// Skip underscores
if name_spanned.node.as_ref() == "_" {
var_locations.push(None);
continue;
}
// Add variable to scope
let var_location = scope.add_variable(
name_spanned.node.clone(),
LocationRequest::Persist,
Some(name_spanned.span),
)?;
var_locations.push(Some(var_location));
}
// Second pass: pop in reverse order through the list (since stack is LIFO)
// var_locations[0] is the first element (bottom of stack)
// var_locations[n-1] is the last element (top of stack)
// We pop from the top, so we iterate in reverse through var_locations
for (idx, var_loc_opt) in var_locations.iter().enumerate().rev() {
match var_loc_opt {
Some(var_location) => {
let var_reg = self.resolve_register(&var_location)?;
// Pop from stack into the variable's register
self.write_instruction(
Instruction::Pop(Operand::Register(var_reg)),
Some(names[idx].span),
)?;
}
None => {
// Underscore: pop into temp register to discard
self.write_instruction(
Instruction::Pop(Operand::Register(
VariableScope::TEMP_STACK_REGISTER,
)),
Some(names[idx].span),
)?;
}
}
}
// Restore stack pointer to value saved at function entry
self.write_instruction(
Instruction::Move(
Operand::StackPointer,
Operand::Register(VariableScope::RETURN_REGISTER),
),
Some(value.span),
)?;
}
Expression::Tuple(tuple_expr) => {
// Direct tuple literal: (value1, value2, ...)
let tuple_elements = tuple_expr.node;
// Validate tuple size matches names
if tuple_elements.len() != names.len() {
return Err(Error::TupleSizeMismatch(
names.len(),
tuple_elements.len(),
value.span,
));
}
// Compile each element and assign to corresponding variable
for (name_spanned, element) in names.into_iter().zip(tuple_elements.into_iter()) {
// Skip underscores
if name_spanned.node.as_ref() == "_" {
continue;
}
// Add variable to scope
let var_location = scope.add_variable(
name_spanned.node.clone(),
LocationRequest::Persist,
Some(name_spanned.span),
)?;
// Compile the element expression - use compile_operand to handle all expression types
let (value_operand, cleanup) = self.compile_operand(element, scope)?;
self.emit_variable_assignment(&var_location, value_operand)?;
// Clean up any temporary registers used for complex expressions
if let Some(temp_name) = cleanup {
scope.free_temp(temp_name, None)?;
}
}
}
_ => {
return Err(Error::Unknown(
"Tuple declaration only supports function invocations or tuple literals as RHS"
.into(),
Some(value.span),
));
}
}
Ok(())
}
fn expression_tuple_assignment(
&mut self,
tuple_assign: TupleAssignmentExpression<'a>,
scope: &mut VariableScope<'a, '_>,
) -> Result<(), Error<'a>> {
let TupleAssignmentExpression { names, value } = tuple_assign;
// Similar to tuple declaration, but variables must already exist
match value.node {
Expression::Invocation(invoke_expr) => {
// Execute the function call
// Tuple values are on the stack, sp points after the last pushed value
// Pop them in reverse order (from end to beginning)
// We don't need to backup registers for tuple returns
self.expression_function_invocation_with_invocation(&invoke_expr, scope, false)?;
// Validate tuple return size matches the assignment
let func_name = &invoke_expr.node.name.node;
if let Some(&expected_size) = self.function_tuple_return_sizes.get(func_name) {
if names.len() != expected_size {
self.errors.push(Error::TupleSizeMismatch(
expected_size,
names.len(),
value.span,
));
}
}
// First pass: look up variable locations
let mut var_locs = Vec::new();
for name_spanned in names.iter() {
// Skip underscores
if name_spanned.node.as_ref() == "_" {
var_locs.push(None);
continue;
}
// Get the existing variable location
let var_location =
match scope.get_location_of(&name_spanned.node, Some(name_spanned.span)) {
Ok(l) => l,
Err(_) => {
self.errors.push(Error::UnknownIdentifier(
name_spanned.node.clone(),
name_spanned.span,
));
VariableLocation::Temporary(0)
}
};
var_locs.push(Some(var_location));
}
// Second pass: pop in reverse order and assign
for (idx, var_loc_opt) in var_locs.iter().enumerate().rev() {
if let Some(var_location) = var_loc_opt {
// Pop from stack and assign to variable
match var_location {
VariableLocation::Temporary(reg)
| VariableLocation::Persistant(reg) => {
// Pop directly into the variable's register
self.write_instruction(
Instruction::Pop(Operand::Register(*reg)),
Some(names[idx].span),
)?;
}
VariableLocation::Stack(offset) => {
// Pop into temp register, then write to variable stack
self.write_instruction(
Instruction::Pop(Operand::Register(
VariableScope::TEMP_STACK_REGISTER,
)),
Some(names[idx].span),
)?;
// Write to variable stack location
self.write_instruction(
Instruction::Sub(
Operand::Register(0),
Operand::StackPointer,
Operand::Number((*offset).into()),
),
Some(names[idx].span),
)?;
self.write_instruction(
Instruction::Put(
Operand::Device(Cow::from("db")),
Operand::Register(0),
Operand::Register(VariableScope::TEMP_STACK_REGISTER),
),
Some(names[idx].span),
)?;
}
VariableLocation::Constant(_) => {
return Err(Error::ConstAssignment(
names[idx].node.clone(),
names[idx].span,
));
}
VariableLocation::Device(_) => {
return Err(Error::DeviceAssignment(
names[idx].node.clone(),
names[idx].span,
));
}
}
}
}
// Restore stack pointer to value saved at function entry
self.write_instruction(
Instruction::Move(
Operand::StackPointer,
Operand::Register(VariableScope::RETURN_REGISTER),
),
Some(value.span),
)?;
}
Expression::Tuple(tuple_expr) => {
// Direct tuple literal: (value1, value2, ...)
let tuple_elements = tuple_expr.node;
// Validate tuple size matches names
if tuple_elements.len() != names.len() {
return Err(Error::TupleSizeMismatch(
tuple_elements.len(),
names.len(),
value.span,
));
}
// Compile each element and assign to corresponding variable
for (name_spanned, element) in names.into_iter().zip(tuple_elements.into_iter()) {
// Skip underscores
if name_spanned.node.as_ref() == "_" {
continue;
}
// Get the existing variable location
let var_location =
match scope.get_location_of(&name_spanned.node, Some(name_spanned.span)) {
Ok(l) => l,
Err(_) => {
self.errors.push(Error::UnknownIdentifier(
name_spanned.node.clone(),
name_spanned.span,
));
VariableLocation::Temporary(0)
}
};
// Compile the element expression - use compile_operand to handle all expression types
let (value_operand, cleanup) = self.compile_operand(element, scope)?;
// Assign the compiled value to the target variable location
match &var_location {
VariableLocation::Temporary(reg) | VariableLocation::Persistant(reg) => {
self.write_instruction(
Instruction::Move(Operand::Register(*reg), value_operand),
Some(name_spanned.span),
)?;
}
VariableLocation::Stack(offset) => {
self.write_instruction(
Instruction::Sub(
Operand::Register(VariableScope::TEMP_STACK_REGISTER),
Operand::StackPointer,
Operand::Number((*offset).into()),
),
Some(name_spanned.span),
)?;
self.write_instruction(
Instruction::Put(
Operand::Device(Cow::from("db")),
Operand::Register(VariableScope::TEMP_STACK_REGISTER),
value_operand,
),
Some(name_spanned.span),
)?;
}
VariableLocation::Constant(_) => {
return Err(Error::ConstAssignment(
name_spanned.node.clone(),
name_spanned.span,
));
}
VariableLocation::Device(_) => {
return Err(Error::DeviceAssignment(
name_spanned.node.clone(),
name_spanned.span,
));
}
}
// Clean up any temporary registers used for complex expressions
if let Some(temp_name) = cleanup {
scope.free_temp(temp_name, None)?;
}
}
}
_ => {
return Err(Error::Unknown(
"Tuple assignment only supports function invocations or tuple literals as RHS"
.into(),
Some(value.span),
));
}
}
Ok(())
}
fn expression_function_invocation(
&mut self,
invoke_expr: Spanned<InvocationExpression<'a>>,
@@ -1941,6 +2465,169 @@ impl<'a> Compiler<'a> {
}
}
}
Expression::Tuple(tuple_expr) => {
let span = expr.span;
let tuple_elements = &tuple_expr.node;
// Record the stack offset where the tuple will start
let tuple_start_offset = scope.stack_offset();
// First pass: Add temporary variables to scope for each tuple element
// This updates the scope's stack_offset so we can calculate ra position later
let mut temp_names = Vec::new();
for (i, _element) in tuple_elements.iter().enumerate() {
let temp_name = format!("__tuple_ret_{}", i);
scope.add_variable(
temp_name.clone().into(),
LocationRequest::Stack,
Some(span),
)?;
temp_names.push(temp_name);
}
// Second pass: Push the actual values onto the stack
for element in tuple_elements.iter() {
match &element.node {
Expression::Literal(lit) => {
let value_operand = extract_literal(lit.node.clone(), false)?;
self.write_instruction(
Instruction::Push(value_operand),
Some(span),
)?;
}
Expression::Variable(var) => {
let var_loc = match scope.get_location_of(&var.node, Some(var.span))
{
Ok(l) => l,
Err(_) => {
self.errors.push(Error::UnknownIdentifier(
var.node.clone(),
var.span,
));
VariableLocation::Temporary(0)
}
};
match &var_loc {
VariableLocation::Temporary(reg)
| VariableLocation::Persistant(reg) => {
self.write_instruction(
Instruction::Push(Operand::Register(*reg)),
Some(span),
)?;
}
VariableLocation::Constant(lit) => {
let value_operand = extract_literal(lit.clone(), false)?;
self.write_instruction(
Instruction::Push(value_operand),
Some(span),
)?;
}
VariableLocation::Stack(offset) => {
self.write_instruction(
Instruction::Sub(
Operand::Register(
VariableScope::TEMP_STACK_REGISTER,
),
Operand::StackPointer,
Operand::Number((*offset).into()),
),
Some(span),
)?;
self.write_instruction(
Instruction::Get(
Operand::Register(
VariableScope::TEMP_STACK_REGISTER,
),
Operand::Device(Cow::from("db")),
Operand::Register(
VariableScope::TEMP_STACK_REGISTER,
),
),
Some(span),
)?;
self.write_instruction(
Instruction::Push(Operand::Register(
VariableScope::TEMP_STACK_REGISTER,
)),
Some(span),
)?;
}
VariableLocation::Device(_) => {
return Err(Error::Unknown(
"You can not return a device from a function.".into(),
Some(var.span),
));
}
}
}
_ => {
// For complex expressions, just push 0 for now
self.write_instruction(
Instruction::Push(Operand::Number(
Number::Integer(0, Unit::None).into(),
)),
Some(span),
)?;
}
}
}
// Store the pointer to the tuple (stack offset) in r15
self.write_instruction(
Instruction::Move(
Operand::Register(VariableScope::RETURN_REGISTER),
Operand::Number(tuple_start_offset.into()),
),
Some(span),
)?;
// For tuple returns, ra is buried under the tuple values on the stack.
// Stack layout: [ra, val0, val1, val2, ...]
// Instead of popping and pushing, use Get to read ra from its stack position
// while leaving the tuple values in place.
// Calculate offset to ra from current stack position
// ra is at tuple_start_offset - 1, so offset = (current - tuple_start) + 1
let current_offset = scope.stack_offset();
let ra_offset_from_current = (current_offset - tuple_start_offset + 1) as i32;
// Use a temp register to read ra from the stack
if ra_offset_from_current > 0 {
self.write_instruction(
Instruction::Sub(
Operand::Register(VariableScope::TEMP_STACK_REGISTER),
Operand::StackPointer,
Operand::Number(ra_offset_from_current.into()),
),
Some(span),
)?;
self.write_instruction(
Instruction::Get(
Operand::ReturnAddress,
Operand::Device(Cow::from("db")),
Operand::Register(VariableScope::TEMP_STACK_REGISTER),
),
Some(span),
)?;
}
// Jump back to caller
self.write_instruction(Instruction::Jump(Operand::ReturnAddress), Some(span))?;
// Mark that we had a tuple return so the function declaration can skip return label cleanup
self.current_return_is_tuple = true;
// Record the tuple return size for validation at call sites
if let Some(func_name) = &self.current_function_name {
self.function_tuple_return_sizes
.insert(func_name.clone(), tuple_elements.len());
}
// Early return to skip the normal return label processing
return Ok(VariableLocation::Persistant(VariableScope::RETURN_REGISTER));
}
_ => {
return Err(Error::Unknown(
format!("Unsupported `return` statement: {:?}", expr),
@@ -2569,6 +3256,78 @@ impl<'a> Compiler<'a> {
}
}
/// Check if a function body contains any tuple returns
fn has_tuple_return(body: &BlockExpression) -> bool {
for expr in &body.0 {
match &expr.node {
Expression::Return(Some(ret_expr)) => {
if let Expression::Tuple(_) = &ret_expr.node {
return true;
}
}
Expression::If(if_expr) => {
// Check the then block
if Self::has_tuple_return(&if_expr.node.body.node) {
return true;
}
// Check the else branch if it exists
if let Some(else_branch) = &if_expr.node.else_branch {
match &else_branch.node {
Expression::Block(block) => {
if Self::has_tuple_return(block) {
return true;
}
}
Expression::If(_) => {
// Handle else-if chains
if Self::has_tuple_return_in_expr(else_branch) {
return true;
}
}
_ => {}
}
}
}
Expression::While(while_expr) => {
if Self::has_tuple_return(&while_expr.node.body) {
return true;
}
}
Expression::Loop(loop_expr) => {
if Self::has_tuple_return(&loop_expr.node.body.node) {
return true;
}
}
Expression::Block(block) => {
if Self::has_tuple_return(block) {
return true;
}
}
_ => {}
}
}
false
}
/// Helper to check for tuple returns in any expression
fn has_tuple_return_in_expr(expr: &Spanned<Expression>) -> bool {
match &expr.node {
Expression::Block(block) => Self::has_tuple_return(block),
Expression::If(if_expr) => {
if Self::has_tuple_return(&if_expr.node.body.node) {
return true;
}
if let Some(else_branch) = &if_expr.node.else_branch {
return Self::has_tuple_return_in_expr(else_branch);
}
false
}
Expression::While(while_expr) => Self::has_tuple_return(&while_expr.node.body),
Expression::Loop(loop_expr) => Self::has_tuple_return(&loop_expr.node.body.node),
_ => false,
}
}
/// Compile a function declaration.
/// Calees are responsible for backing up any registers they wish to use.
fn expression_function(
@@ -2596,6 +3355,9 @@ impl<'a> Compiler<'a> {
arguments.iter().map(|a| a.node.clone()).collect(),
);
// Set the current function being compiled
self.current_function_name = Some(name.node.clone());
// Declare the function as a line identifier
self.write_instruction(Instruction::LabelDef(name.node.clone()), Some(span))?;
@@ -2657,6 +3419,18 @@ impl<'a> Compiler<'a> {
)?;
}
// If this function has tuple returns, save the SP to r15 before pushing ra
if Self::has_tuple_return(&body) {
self.write_instruction(
Instruction::Move(
Operand::Register(VariableScope::RETURN_REGISTER),
Operand::StackPointer,
),
Some(span),
)?;
self.current_function_sp_saved = true;
}
self.write_instruction(Instruction::Push(Operand::ReturnAddress), Some(span))?;
let return_label = self.next_label_name();
@@ -2710,54 +3484,63 @@ impl<'a> Compiler<'a> {
self.current_return_label = prev_return_label;
self.write_instruction(Instruction::LabelDef(return_label.clone()), Some(span))?;
// Only write the return label if this function doesn't have a tuple return
// (tuple returns handle their own pop ra and return)
if !self.current_return_is_tuple {
self.write_instruction(Instruction::LabelDef(return_label.clone()), Some(span))?;
if ra_stack_offset == 1 {
self.write_instruction(Instruction::Pop(Operand::ReturnAddress), Some(span))?;
if ra_stack_offset == 1 {
self.write_instruction(Instruction::Pop(Operand::ReturnAddress), Some(span))?;
let remaining_cleanup = block_scope.stack_offset() - 1;
if remaining_cleanup > 0 {
let remaining_cleanup = block_scope.stack_offset() - 1;
if remaining_cleanup > 0 {
self.write_instruction(
Instruction::Sub(
Operand::StackPointer,
Operand::StackPointer,
Operand::Number(remaining_cleanup.into()),
),
Some(span),
)?;
}
} else {
self.write_instruction(
Instruction::Sub(
Operand::Register(VariableScope::TEMP_STACK_REGISTER),
Operand::StackPointer,
Operand::StackPointer,
Operand::Number(remaining_cleanup.into()),
Operand::Number(ra_stack_offset.into()),
),
Some(span),
)?;
}
} else {
self.write_instruction(
Instruction::Sub(
Operand::Register(VariableScope::TEMP_STACK_REGISTER),
Operand::StackPointer,
Operand::Number(ra_stack_offset.into()),
),
Some(span),
)?;
self.write_instruction(
Instruction::Get(
Operand::ReturnAddress,
Operand::Device(Cow::from("db")),
Operand::Register(VariableScope::TEMP_STACK_REGISTER),
),
Some(span),
)?;
if block_scope.stack_offset() > 0 {
self.write_instruction(
Instruction::Sub(
Operand::StackPointer,
Operand::StackPointer,
Operand::Number(block_scope.stack_offset().into()),
Instruction::Get(
Operand::ReturnAddress,
Operand::Device(Cow::from("db")),
Operand::Register(VariableScope::TEMP_STACK_REGISTER),
),
Some(span),
)?;
if block_scope.stack_offset() > 0 {
self.write_instruction(
Instruction::Sub(
Operand::StackPointer,
Operand::StackPointer,
Operand::Number(block_scope.stack_offset().into()),
),
Some(span),
)?;
}
}
self.write_instruction(Instruction::Jump(Operand::ReturnAddress), Some(span))?;
}
self.write_instruction(Instruction::Jump(Operand::ReturnAddress), Some(span))?;
// Reset the flag for the next function
self.current_return_is_tuple = false;
self.current_function_sp_saved = false;
self.current_function_name = None;
Ok(())
}
}

View File

@@ -441,7 +441,13 @@ impl<'a> Parser<'a> {
));
}
TokenType::Keyword(Keyword::Let) => Some(self.spanned(|p| p.declaration())?),
TokenType::Keyword(Keyword::Let) => {
if self_matches_peek!(self, TokenType::Symbol(Symbol::LParen)) {
Some(self.spanned(|p| p.tuple_declaration())?)
} else {
Some(self.spanned(|p| p.declaration())?)
}
}
TokenType::Keyword(Keyword::Device) => {
let spanned_dev = self.spanned(|p| p.device())?;
@@ -561,9 +567,7 @@ impl<'a> Parser<'a> {
})
}
TokenType::Symbol(Symbol::LParen) => {
self.spanned(|p| p.priority())?.node.map(|node| *node)
}
TokenType::Symbol(Symbol::LParen) => self.parenthesized_or_tuple()?,
TokenType::Symbol(Symbol::Minus) => {
let start_span = self.current_span();
@@ -642,8 +646,8 @@ impl<'a> Parser<'a> {
}
}
TokenType::Symbol(Symbol::LParen) => *self
.spanned(|p| p.priority())?
.node
.parenthesized_or_tuple()?
.map(Box::new)
.ok_or(Error::UnexpectedEOF)?,
TokenType::Identifier(ref id) if SysCall::is_syscall(id) => {
@@ -774,7 +778,8 @@ impl<'a> Parser<'a> {
| Expression::Ternary(_)
| Expression::Negation(_)
| Expression::MemberAccess(_)
| Expression::MethodCall(_) => {}
| Expression::MethodCall(_)
| Expression::Tuple(_) => {}
_ => {
return Err(Error::InvalidSyntax(
self.current_span(),
@@ -1081,19 +1086,39 @@ impl<'a> Parser<'a> {
end_col: right.span.end_col,
};
expressions.insert(
i,
Spanned {
// Check if the left side is a tuple, and if so, create a TupleAssignment
let node = if let Expression::Tuple(tuple_expr) = &left.node {
// Extract variable names from the tuple, handling underscores
let mut names = Vec::new();
for item in &tuple_expr.node {
if let Expression::Variable(var) = &item.node {
names.push(var.clone());
} else {
return Err(Error::InvalidSyntax(
item.span,
String::from("Tuple assignment can only contain variable names"),
));
}
}
Expression::TupleAssignment(Spanned {
span,
node: Expression::Assignment(Spanned {
span,
node: AssignmentExpression {
assignee: boxed!(left),
expression: boxed!(right),
},
}),
},
);
node: TupleAssignmentExpression {
names,
value: boxed!(right),
},
})
} else {
Expression::Assignment(Spanned {
span,
node: AssignmentExpression {
assignee: boxed!(left),
expression: boxed!(right),
},
})
};
expressions.insert(i, Spanned { span, node });
}
}
operators.retain(|symbol| !matches!(symbol, Symbol::Assign));
@@ -1117,8 +1142,12 @@ impl<'a> Parser<'a> {
expressions.pop().ok_or(Error::UnexpectedEOF)
}
fn priority(&mut self) -> Result<Option<Box<Spanned<Expression<'a>>>>, Error<'a>> {
fn parenthesized_or_tuple(
&mut self,
) -> Result<Option<Spanned<tree_node::Expression<'a>>>, Error<'a>> {
let start_span = self.current_span();
let current_token = self.current_token.as_ref().ok_or(Error::UnexpectedEOF)?;
if !token_matches!(current_token, TokenType::Symbol(Symbol::LParen)) {
return Err(Error::UnexpectedToken(
self.current_span(),
@@ -1127,17 +1156,112 @@ impl<'a> Parser<'a> {
}
self.assign_next()?;
let expression = self.expression()?.ok_or(Error::UnexpectedEOF)?;
let current_token = self.get_next()?.ok_or(Error::UnexpectedEOF)?;
if !token_matches!(current_token, TokenType::Symbol(Symbol::RParen)) {
return Err(Error::UnexpectedToken(
Self::token_to_span(&current_token),
current_token,
));
// Handle empty tuple '()'
if self_matches_peek!(self, TokenType::Symbol(Symbol::RParen)) {
self.assign_next()?;
let end_span = self.current_span();
let span = Span {
start_line: start_span.start_line,
start_col: start_span.start_col,
end_line: end_span.end_line,
end_col: end_span.end_col,
};
return Ok(Some(Spanned {
span,
node: Expression::Tuple(Spanned { span, node: vec![] }),
}));
}
Ok(Some(boxed!(expression)))
let first_expression = self.expression()?.ok_or(Error::UnexpectedEOF)?;
if self_matches_peek!(self, TokenType::Symbol(Symbol::Comma)) {
// It is a tuple
let mut items = vec![first_expression];
while self_matches_peek!(self, TokenType::Symbol(Symbol::Comma)) {
// Next toekn is a comma, we need to consume it and advance 1 more time.
self.assign_next()?;
self.assign_next()?;
items.push(self.expression()?.ok_or(Error::UnexpectedEOF)?);
}
let next = self.get_next()?.ok_or(Error::UnexpectedEOF)?;
if !token_matches!(next, TokenType::Symbol(Symbol::RParen)) {
return Err(Error::UnexpectedToken(Self::token_to_span(&next), next));
}
let end_span = Self::token_to_span(&next);
let span = Span {
start_line: start_span.start_line,
start_col: start_span.start_col,
end_line: end_span.end_line,
end_col: end_span.end_col,
};
Ok(Some(Spanned {
span,
node: Expression::Tuple(Spanned { span, node: items }),
}))
} else {
// It is just priority
let next = self.get_next()?.ok_or(Error::UnexpectedEOF)?;
if !token_matches!(next, TokenType::Symbol(Symbol::RParen)) {
return Err(Error::UnexpectedToken(Self::token_to_span(&next), next));
}
Ok(Some(Spanned {
span: first_expression.span,
node: Expression::Priority(boxed!(first_expression)),
}))
}
}
fn tuple_declaration(&mut self) -> Result<Expression<'a>, Error<'a>> {
// 'let' is consumed before this call
// expect '('
let next = self.get_next()?.ok_or(Error::UnexpectedEOF)?;
if !token_matches!(next, TokenType::Symbol(Symbol::LParen)) {
return Err(Error::UnexpectedToken(Self::token_to_span(&next), next));
}
let mut names = Vec::new();
while !self_matches_peek!(self, TokenType::Symbol(Symbol::RParen)) {
let token = self.get_next()?.ok_or(Error::UnexpectedEOF)?;
let span = Self::token_to_span(&token);
if let TokenType::Identifier(id) = token.token_type {
names.push(Spanned { span, node: id });
} else {
return Err(Error::UnexpectedToken(span, token));
}
if self_matches_peek!(self, TokenType::Symbol(Symbol::Comma)) {
self.assign_next()?;
}
}
self.assign_next()?; // consume ')'
let assign = self.get_next()?.ok_or(Error::UnexpectedEOF)?;
if !token_matches!(assign, TokenType::Symbol(Symbol::Assign)) {
return Err(Error::UnexpectedToken(Self::token_to_span(&assign), assign));
}
self.assign_next()?; // Consume the `=`
let value = self.expression()?.ok_or(Error::UnexpectedEOF)?;
let semi = self.get_next()?.ok_or(Error::UnexpectedEOF)?;
if !token_matches!(semi, TokenType::Symbol(Symbol::Semicolon)) {
return Err(Error::UnexpectedToken(Self::token_to_span(&semi), semi));
}
Ok(Expression::TupleDeclaration(Spanned {
span: names.first().map(|n| n.span).unwrap_or(value.span),
node: TupleDeclarationExpression {
names,
value: boxed!(value),
},
}))
}
fn invocation(&mut self) -> Result<InvocationExpression<'a>, Error<'a>> {

View File

@@ -112,7 +112,7 @@ fn test_function_invocation() -> Result<()> {
#[test]
fn test_priority_expression() -> Result<()> {
let input = r#"
let x = (4);
let x = (4 + 3);
"#;
let tokenizer = Tokenizer::from(input);
@@ -120,7 +120,7 @@ fn test_priority_expression() -> Result<()> {
let expression = parser.parse()?.unwrap();
assert_eq!("(let x = 4)", expression.to_string());
assert_eq!("(let x = ((4 + 3)))", expression.to_string());
Ok(())
}
@@ -137,7 +137,7 @@ fn test_binary_expression() -> Result<()> {
assert_eq!("(((45 * 2) - (15 / 5)) + (5 ** 2))", expr.to_string());
let expr = parser!("(5 - 2) * 10;").parse()?.unwrap();
assert_eq!("((5 - 2) * 10)", expr.to_string());
assert_eq!("(((5 - 2)) * 10)", expr.to_string());
Ok(())
}
@@ -170,7 +170,7 @@ fn test_ternary_expression() -> Result<()> {
fn test_complex_binary_with_ternary() -> Result<()> {
let expr = parser!("let i = (x ? 1 : 3) * 2;").parse()?.unwrap();
assert_eq!("(let i = ((x ? 1 : 3) * 2))", expr.to_string());
assert_eq!("(let i = (((x ? 1 : 3)) * 2))", expr.to_string());
Ok(())
}
@@ -191,3 +191,99 @@ fn test_nested_ternary_right_associativity() -> Result<()> {
assert_eq!("(let i = (a ? b : (c ? d : e)))", expr.to_string());
Ok(())
}
#[test]
fn test_tuple_declaration() -> Result<()> {
let expr = parser!("let (x, _) = (1, 2);").parse()?.unwrap();
assert_eq!("(let (x, _) = (1, 2))", expr.to_string());
Ok(())
}
#[test]
fn test_tuple_assignment() -> Result<()> {
let expr = parser!("(x, y) = (1, 2);").parse()?.unwrap();
assert_eq!("((x, y) = (1, 2))", expr.to_string());
Ok(())
}
#[test]
fn test_tuple_assignment_with_underscore() -> Result<()> {
let expr = parser!("(x, _) = (1, 2);").parse()?.unwrap();
assert_eq!("((x, _) = (1, 2))", expr.to_string());
Ok(())
}
#[test]
fn test_tuple_declaration_with_function_call() -> Result<()> {
let expr = parser!("let (x, y) = doSomething();").parse()?.unwrap();
assert_eq!("(let (x, y) = doSomething())", expr.to_string());
Ok(())
}
#[test]
fn test_tuple_declaration_with_function_call_with_underscore() -> Result<()> {
let expr = parser!("let (x, _) = doSomething();").parse()?.unwrap();
assert_eq!("(let (x, _) = doSomething())", expr.to_string());
Ok(())
}
#[test]
fn test_tuple_assignment_with_function_call() -> Result<()> {
let expr = parser!("(x, y) = doSomething();").parse()?.unwrap();
assert_eq!("((x, y) = doSomething())", expr.to_string());
Ok(())
}
#[test]
fn test_tuple_assignment_with_function_call_with_underscore() -> Result<()> {
let expr = parser!("(x, _) = doSomething();").parse()?.unwrap();
assert_eq!("((x, _) = doSomething())", expr.to_string());
Ok(())
}
#[test]
fn test_tuple_declaration_with_complex_expressions() -> Result<()> {
let expr = parser!("let (x, y) = (1 + 1, doSomething());")
.parse()?
.unwrap();
assert_eq!("(let (x, y) = ((1 + 1), doSomething()))", expr.to_string());
Ok(())
}
#[test]
fn test_tuple_assignment_with_complex_expressions() -> Result<()> {
let expr = parser!("(x, y) = (doSomething(), 123 / someValue.Setting);")
.parse()?
.unwrap();
assert_eq!(
"((x, y) = (doSomething(), (123 / someValue.Setting)))",
expr.to_string()
);
Ok(())
}
#[test]
fn test_tuple_declaration_all_complex_expressions() -> Result<()> {
let expr = parser!("let (x, y) = (a + b, c * d);").parse()?.unwrap();
assert_eq!("(let (x, y) = ((a + b), (c * d)))", expr.to_string());
Ok(())
}

View File

@@ -245,6 +245,42 @@ impl<'a> std::fmt::Display for DeviceDeclarationExpression<'a> {
}
}
#[derive(Debug, PartialEq, Eq)]
pub struct TupleDeclarationExpression<'a> {
pub names: Vec<Spanned<Cow<'a, str>>>,
pub value: Box<Spanned<Expression<'a>>>,
}
impl<'a> std::fmt::Display for TupleDeclarationExpression<'a> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
let names = self
.names
.iter()
.map(|n| n.node.to_string())
.collect::<Vec<_>>()
.join(", ");
write!(f, "(let ({}) = {})", names, self.value)
}
}
#[derive(Debug, PartialEq, Eq)]
pub struct TupleAssignmentExpression<'a> {
pub names: Vec<Spanned<Cow<'a, str>>>,
pub value: Box<Spanned<Expression<'a>>>,
}
impl<'a> std::fmt::Display for TupleAssignmentExpression<'a> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
let names = self
.names
.iter()
.map(|n| n.node.to_string())
.collect::<Vec<_>>()
.join(", ");
write!(f, "(({}) = {})", names, self.value)
}
}
#[derive(Debug, PartialEq, Eq)]
pub struct IfExpression<'a> {
pub condition: Box<Spanned<Expression<'a>>>,
@@ -348,6 +384,9 @@ pub enum Expression<'a> {
Return(Option<Box<Spanned<Expression<'a>>>>),
Syscall(Spanned<SysCall<'a>>),
Ternary(Spanned<TernaryExpression<'a>>),
Tuple(Spanned<Vec<Spanned<Expression<'a>>>>),
TupleAssignment(Spanned<TupleAssignmentExpression<'a>>),
TupleDeclaration(Spanned<TupleDeclarationExpression<'a>>),
Variable(Spanned<Cow<'a, str>>),
While(Spanned<WhileExpression<'a>>),
}
@@ -384,8 +423,20 @@ impl<'a> std::fmt::Display for Expression<'a> {
),
Expression::Syscall(e) => write!(f, "{}", e),
Expression::Ternary(e) => write!(f, "{}", e),
Expression::Tuple(e) => {
let items = e
.node
.iter()
.map(|x| x.to_string())
.collect::<Vec<_>>()
.join(", ");
write!(f, "({})", items)
}
Expression::TupleAssignment(e) => write!(f, "{}", e),
Expression::TupleDeclaration(e) => write!(f, "{}", e),
Expression::Variable(id) => write!(f, "{}", id),
Expression::While(e) => write!(f, "{}", e),
}
}
}

View File

@@ -115,7 +115,7 @@ macro_rules! keyword {
}
#[derive(Debug, PartialEq, Hash, Eq, Clone, Logos)]
#[logos(skip r"[ \t\f]+")]
#[logos(skip r"[ \r\t\f]+")]
#[logos(extras = Extras)]
#[logos(error(LexError, LexError::from_lexer))]
pub enum TokenType<'a> {
@@ -843,3 +843,20 @@ documented! {
}
}
#[cfg(test)]
mod tests {
use super::TokenType;
use logos::Logos;
#[test]
fn test_windows_crlf_endings() -> anyhow::Result<()> {
let src = "let i = 0;\r\n";
let lexer = TokenType::lexer(src);
let tokens = lexer.collect::<Vec<_>>();
assert!(!tokens.iter().any(|res| res.is_err()));
Ok(())
}
}

View File

@@ -1,43 +0,0 @@
device self = "db";
device gasSensor = "d0";
device atmosAnal = "d1";
device atmosValve = "d2";
device atmosTank = "d3";
device atmosInlet = "d4";
atmosInlet.Lock = true;
atmosInlet.Mode = 1;
atmosValve.On = false;
atmosValve.Lock = true;
let isPumping = false;
let tempPressure = 0;
loop {
yield();
let temp = gasSensor.Temperature;
let pres = atmosAnal.Pressure;
let liqV = atmosAnal.VolumeOfLiquid;
let tempVol = atmosAnal.Volume;
let stress = 5_000 * liqV / tempVol;
tempPressure = isPumping ? 1_000 : 10_000;
let shouldTurnOnInlet = (
temp > 0c &&
pres < tempPressure &&
stress < 50
);
isPumping = (
!shouldTurnOnInlet &&
atmosTank.Pressure < 35_000 &&
atmosAnal.RatioPollutant == 0 &&
atmosAnal.RatioLiquidPollutant == 0 &&
atmosAnal.Pressure > 1_000
);
atmosValve.On = isPumping;
atmosInlet.On = shouldTurnOnInlet;
}

View File

@@ -1,72 +0,0 @@
/// Laree script V1
device self = "db";
device larre = "d0";
device exportChute = "d1";
const TOTAL_SLOTS = 19;
const EXPORT_CHUTE = 1;
const START_STATION = 2;
let currentIndex = 0;
/// Waits for the larre to be idle before continuing
fn waitForIdle() {
yield();
while (!larre.Idle) {
yield();
}
}
/// Instructs the Larre to go to the chute and deposit
/// what is currently in its arm
fn deposit() {
larre.Setting = EXPORT_CHUTE;
waitForIdle();
larre.Activate = true;
waitForIdle();
exportChute.Open = false;
}
/// This function is responsible for checking the plant under
/// the larre at this index, and harvesting if applicable
fn checkAndHarvest(currentIndex) {
if (currentIndex <= EXPORT_CHUTE || ls(larre, 255, "Seeding") < 1) {
return;
}
// harvest from this device
while (ls(larre, 255, "Mature")) {
yield();
larre.Activate = true;
}
let hasRemainingPlant = ls(larre, 255, "Occupied");
// move to the export chute
larre.Setting = EXPORT_CHUTE;
waitForIdle();
deposit();
if (hasRemainingPlant) {
deposit();
}
larre.Setting = currentIndex;
waitForIdle();
if (ls(larre, 0, "Occupied")) {
larre.Activate = true;
}
waitForIdle();
}
loop {
yield();
if (!larre.Idle) {
continue;
}
let newIndex = currentIndex + 1 > TOTAL_SLOTS ? START_STATION : currentIndex + 1;
checkAndHarvest(currentIndex);
larre.Setting = newIndex;
currentIndex = newIndex;
}