Merge pull request #19 from dbidwell94/pre-release

Pre release.. finish Math syscalls, various bug fixes, cleanup logging
This commit is contained in:
2025-12-06 22:51:35 -07:00
committed by GitHub
14 changed files with 1025 additions and 182 deletions

70
ModData/About/About.xml Normal file
View File

@@ -0,0 +1,70 @@
<?xml version="1.0" encoding="utf-8"?>
<ModMetadata xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<Name>StationeersSlang</Name>
<Author>JoeDiertay</Author>
<Version>0.1.0</Version>
<Description>
Slang (Stationeers Language) is a high-level programming language that compiles directly into IC10 within the game.
Features:
- In-Game Compilation: Write C-style code directly in the IC editor.
- Automatic Register Management: Define variables with 'let' (e.g., let x = 10) without managing r0-r15.
- Standard Control Flow: Use if/else, while, loop, break, and continue.
- Functions: Define and call functions with arguments.
- Smart Editor: Real-time syntax highlighting and error checking (red text for errors).
- Persistent Source: Your high-level source code is saved inside the chip data, so you can edit it later.
- Constant Folding: Mathematical operations on constants are calculated at compile time to save instructions.
- Device Aliasing: Easy device mapping (e.g., device sensor = "d0").
Installation:
This is a StationeersLaunchPad Plugin Mod. It requires BepInEx to be installed.
Usage:
1. Open any IC10 housing or editor.
2. Write Slang code.
3. Press Confirm to compile and run.
</Description>
<Tags>
<Tag>Logic</Tag>
<Tag>Scripting</Tag>
<Tag>Code</Tag>
<Tag>BepInEx</Tag>
<Tag>StationeersLaunchPad</Tag>
<Tag>Quality of Life</Tag>
</Tags>
<InGameDescription><![CDATA[
<size=30><color=#ffff00>Slang - High Level Language Compiler</color></size>
A modern programming experience for Stationeers. Write C-style code that compiles to MIPS assembly instantly.
<color=#ffa500><b>Features</b></color>
- <b>In-Game Compilation:</b> Write high-level logic directly in the chip editor.
- <b>Automatic Registers:</b> Stop juggling <color=#add8e6>r0-r15</color>. Just use <color=#569cd6>let</color> variables.
- <b>Control Flow:</b> Full support for <color=#c586c0>if</color>, <color=#c586c0>else</color>, <color=#c586c0>while</color>, and <color=#c586c0>loop</color>.
- <b>Smart Editor:</b> Integrated syntax highlighting and real-time error checking.
- <b>Persistent Code:</b> Your Slang source code is saved with the chip, so you never lose your work.
- <b>Optimization:</b> The compiler automatically optimizes constant math (e.g., <color=#b5cea8>1 + 2</color> becomes <color=#b5cea8>3</color>).
<color=#ffa500><b>Example Code</b></color>
<color=#569cd6>device</color> sensor = <color=#ce9178>"d0"</color>;
<color=#569cd6>const</color> MAX_TEMP = <color=#b5cea8>300k</color>;
<color=#c586c0>loop</color> {
<color=#569cd6>let</color> temp = sensor.Temperature;
<color=#c586c0>if</color> (temp > MAX_TEMP) {
<color=#6a9955>// Do logic here</color>
}
yield();
}
<b><color=#ffff00>Installation</color></b>
This is a <color=#ffa500>StationeersLaunchPad</color> Plugin Mod. It requires BepInEx to be installed.
See: https://github.com/StationeersLaunchPad/StationeersLaunchPad
Source Code: https://github.com/dbidwell94/stationeers_lang
]]>
</InGameDescription>
<Dependencies>
<Dependency>IC10Editor</Dependency>
</Dependencies>
<LoadAfter>IC10Editor</LoadAfter>
</ModMetadata>

BIN
ModData/About/Preview.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 481 KiB

BIN
ModData/About/thumb.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 481 KiB

0
ModData/Bepinex Normal file
View File

View File

@@ -5,6 +5,7 @@ set -e
RUST_DIR="rust_compiler"
CSHARP_DIR="csharp_mod"
RELEASE_DIR="release"
METADATA_DIR="ModData"
export RUSTFLAGS="--remap-path-prefix=${PWD}=. --remap-path-prefix=${HOME}/.cargo=~/.cargo"
@@ -39,9 +40,13 @@ echo "--------------------"
RUST_WIN_EXE="$RUST_DIR/target/x86_64-pc-windows-gnu/release/slang.exe"
RUST_WIN_DLL="$RUST_DIR/target/x86_64-pc-windows-gnu/release/slang.dll"
RUST_LINUX_BIN="$RUST_DIR/target/x86_64-unknown-linux-gnu/release/slang"
CHARP_DLL="$CSHARP_DIR/bin/Release/net48/StationeersSlang.dll"
CSHARP_DLL="$CSHARP_DIR/bin/Release/net48/StationeersSlang.dll"
# Remove the release directory if it exists so we have a fresh build dir
if [[ -d "$RELEASE_DIR" ]]; then
rm -rd "$RELEASE_DIR"
fi
# Check if the release dir exists, if not: create it.
if [[ ! -d "$RELEASE_DIR" ]]; then
mkdir "$RELEASE_DIR"
fi
@@ -51,6 +56,9 @@ cp "$RUST_WIN_EXE" "$RELEASE_DIR/slang.exe"
# This is the linux executable
cp "$RUST_LINUX_BIN" "$RELEASE_DIR/slang"
# This is the DLL mod itself
cp "$CHARP_DLL" "$RELEASE_DIR/StationeersSlang.dll"
cp "$CSHARP_DLL" "$RELEASE_DIR/StationeersSlang.dll"
# This is the rust-only compiler for use in injecting into the mod
cp "$RUST_WIN_DLL" "$RELEASE_DIR/rust_slang.dll"
# This is the whole bundled workshop release version of the mod
cp -r "$METADATA_DIR" "$RELEASE_DIR/workshop"
cp "$CSHARP_DLL" "$RELEASE_DIR/workshop/StationeersSlang.dll"

View File

@@ -72,8 +72,6 @@ public class SlangFormatter : ICodeFormatter
public override StyledLine ParseLine(string line)
{
L.Debug($"Parsing line for syntax highlighting: {line}");
// We create the line first
var styledLine = new StyledLine(line);
@@ -83,7 +81,6 @@ public class SlangFormatter : ICodeFormatter
// We call update to create the basic tokens
styledLine.Update(tokens);
// CRITICAL FIX: We must manually re-attach metadata because StyledLine.Update() drops it.
ReattachMetadata(styledLine, tokens);
return styledLine;
@@ -170,34 +167,35 @@ public class SlangFormatter : ICodeFormatter
if (line is null)
continue;
// 1. Get base syntax tokens
var allTokens = Marshal.TokenizeLine(line.Text);
// 1. Get base syntax tokens, converting to a dictionary for ease in deduping error tokens
var allTokensDict = Marshal.TokenizeLine(line.Text).ToDictionary((k) => k.Column);
// 2. Overlay error tokens if diagnostics exist for this line
// 2. Replace valid tokens with error tokens if present
if (dict.ContainsKey(lineIndex))
{
foreach (var lineDiagnostic in dict[lineIndex])
{
allTokens.Add(
new SemanticToken(
line: (int)lineIndex,
column: Math.Abs((int)lineDiagnostic.Range.StartCol),
length: Math.Abs(
(int)(lineDiagnostic.Range.EndCol - lineDiagnostic.Range.StartCol)
),
type: 0,
style: ICodeFormatter.ColorError,
data: lineDiagnostic.Message,
isError: true
)
var column = Math.Abs((int)lineDiagnostic.Range.StartCol);
allTokensDict[column] = new SemanticToken(
line: (int)lineIndex,
column,
length: Math.Abs(
(int)(lineDiagnostic.Range.EndCol - lineDiagnostic.Range.StartCol)
),
type: 0,
style: ICodeFormatter.ColorError,
data: lineDiagnostic.Message,
isError: true
);
}
}
var allTokens = allTokensDict.Values.ToList();
// 3. Update the line (this clears existing tokens and uses the list we just built)
line.Update(allTokens);
// 4. CRITICAL FIX: Re-attach metadata that Update() dropped
ReattachMetadata(line, allTokens);
}

View File

@@ -147,7 +147,6 @@ public static class Marshal
};
var tokens = Ffi.tokenize_line(strRef);
L.Debug($"Tokenized line '{inputString}' into {tokens.len} tokens.");
return tokens.ToTokenList();
}
}

View File

@@ -0,0 +1,388 @@
use crate::compile;
use anyhow::Result;
use indoc::indoc;
use pretty_assertions::assert_eq;
#[test]
fn test_acos() -> Result<()> {
let compiled = compile! {
debug
"
let i = acos(123);
"
};
assert_eq!(
compiled,
indoc! {
"
j main
main:
acos r15 123
move r8 r15 #i
"
}
);
Ok(())
}
#[test]
fn test_asin() -> Result<()> {
let compiled = compile! {
debug
"
let i = asin(123);
"
};
assert_eq!(
compiled,
indoc! {
"
j main
main:
asin r15 123
move r8 r15 #i
"
}
);
Ok(())
}
#[test]
fn test_atan() -> Result<()> {
let compiled = compile! {
debug
"
let i = atan(123);
"
};
assert_eq!(
compiled,
indoc! {
"
j main
main:
atan r15 123
move r8 r15 #i
"
}
);
Ok(())
}
#[test]
fn test_atan2() -> Result<()> {
let compiled = compile! {
debug
"
let i = atan2(123, 456);
"
};
assert_eq!(
compiled,
indoc! {
"
j main
main:
atan2 r15 123 456
move r8 r15 #i
"
}
);
Ok(())
}
#[test]
fn test_abs() -> Result<()> {
let compiled = compile! {
debug
"
let i = abs(-123);
"
};
assert_eq!(
compiled,
indoc! {
"
j main
main:
abs r15 -123
move r8 r15 #i
"
}
);
Ok(())
}
#[test]
fn test_ceil() -> Result<()> {
let compiled = compile! {
debug
"
let i = ceil(123.90);
"
};
assert_eq!(
compiled,
indoc! {
"
j main
main:
ceil r15 123.90
move r8 r15 #i
"
}
);
Ok(())
}
#[test]
fn test_cos() -> Result<()> {
let compiled = compile! {
debug
"
let i = cos(123);
"
};
assert_eq!(
compiled,
indoc! {
"
j main
main:
cos r15 123
move r8 r15 #i
"
}
);
Ok(())
}
#[test]
fn test_floor() -> Result<()> {
let compiled = compile! {
debug
"
let i = floor(123);
"
};
assert_eq!(
compiled,
indoc! {
"
j main
main:
floor r15 123
move r8 r15 #i
"
}
);
Ok(())
}
#[test]
fn test_log() -> Result<()> {
let compiled = compile! {
debug
"
let i = log(123);
"
};
assert_eq!(
compiled,
indoc! {
"
j main
main:
log r15 123
move r8 r15 #i
"
}
);
Ok(())
}
#[test]
fn test_max() -> Result<()> {
let compiled = compile! {
debug
"
let i = max(123, 456);
"
};
assert_eq!(
compiled,
indoc! {
"
j main
main:
max r15 123 456
move r8 r15 #i
"
}
);
Ok(())
}
#[test]
fn test_min() -> Result<()> {
let compiled = compile! {
debug
"
let i = min(123, 456);
"
};
assert_eq!(
compiled,
indoc! {
"
j main
main:
min r15 123 456
move r8 r15 #i
"
}
);
Ok(())
}
#[test]
fn test_rand() -> Result<()> {
let compiled = compile! {
debug
"
let i = rand();
"
};
assert_eq!(
compiled,
indoc! {
"
j main
main:
rand r15
move r8 r15 #i
"
}
);
Ok(())
}
#[test]
fn test_sin() -> Result<()> {
let compiled = compile! {
debug
"
let i = sin(3);
"
};
assert_eq!(
compiled,
indoc! {
"
j main
main:
sin r15 3
move r8 r15 #i
"
}
);
Ok(())
}
#[test]
fn test_sqrt() -> Result<()> {
let compiled = compile! {
debug
"
let i = sqrt(3);
"
};
assert_eq!(
compiled,
indoc! {
"
j main
main:
sqrt r15 3
move r8 r15 #i
"
}
);
Ok(())
}
#[test]
fn test_tan() -> Result<()> {
let compiled = compile! {
debug
"
let i = tan(3);
"
};
assert_eq!(
compiled,
indoc! {
"
j main
main:
tan r15 3
move r8 r15 #i
"
}
);
Ok(())
}
#[test]
fn test_trunc() -> Result<()> {
let compiled = compile! {
debug
"
let i = trunc(3.234);
"
};
assert_eq!(
compiled,
indoc! {
"
j main
main:
trunc r15 3.234
move r8 r15 #i
"
}
);
Ok(())
}

View File

@@ -47,4 +47,5 @@ mod declaration_literal;
mod function_declaration;
mod logic_expression;
mod loops;
mod math_syscall;
mod syscall;

View File

@@ -3,7 +3,7 @@ use crate::variable_manager::{self, LocationRequest, VariableLocation, VariableS
use helpers::prelude::*;
use parser::{
Parser as ASTParser,
sys_call::{SysCall, System},
sys_call::{Math, SysCall, System},
tree_node::{
AssignmentExpression, BinaryExpression, BlockExpression, ConstDeclarationExpression,
DeviceDeclarationExpression, Expression, FunctionExpression, IfExpression,
@@ -97,12 +97,7 @@ impl From<Error> for lsp_types::Diagnostic {
severity: Some(DiagnosticSeverity::ERROR),
..Default::default()
},
ScopeError(e) => Diagnostic {
message: e.to_string(),
range: Range::default(),
severity: Some(DiagnosticSeverity::ERROR),
..Default::default()
},
ScopeError(e) => e.into(),
DuplicateIdentifier(_, span)
| UnknownIdentifier(_, span)
| InvalidDevice(_, span)
@@ -271,6 +266,10 @@ impl<'a, W: std::io::Write> Compiler<'a, W> {
node: SysCall::System(system),
span,
}) => self.expression_syscall_system(system, span, scope),
Expression::Syscall(Spanned {
node: SysCall::Math(math),
..
}) => self.expression_syscall_math(math, scope),
Expression::While(expr_while) => {
self.expression_while(expr_while.node, scope)?;
Ok(None)
@@ -284,7 +283,7 @@ impl<'a, W: std::io::Write> Compiler<'a, W> {
Ok(None)
}
Expression::DeviceDeclaration(expr_dev) => {
self.expression_device(expr_dev.node, expr_dev.span)?;
self.expression_device(expr_dev.node)?;
Ok(None)
}
Expression::Declaration(var_name, decl_expr) => {
@@ -304,7 +303,7 @@ impl<'a, W: std::io::Write> Compiler<'a, W> {
// Invocation returns result in r15 (RETURN_REGISTER).
// If used as an expression, we must move it to a temp to avoid overwrite.
let temp_name = self.next_temp_name();
let temp_loc = scope.add_variable(&temp_name, LocationRequest::Temp)?;
let temp_loc = scope.add_variable(&temp_name, LocationRequest::Temp, None)?;
self.emit_variable_assignment(
&temp_name,
&temp_loc,
@@ -326,7 +325,7 @@ impl<'a, W: std::io::Write> Compiler<'a, W> {
Expression::Literal(spanned_lit) => match spanned_lit.node {
Literal::Number(num) => {
let temp_name = self.next_temp_name();
let loc = scope.add_variable(&temp_name, LocationRequest::Temp)?;
let loc = scope.add_variable(&temp_name, LocationRequest::Temp, None)?;
self.emit_variable_assignment(&temp_name, &loc, num.to_string())?;
Ok(Some(CompilationResult {
location: loc,
@@ -336,7 +335,7 @@ impl<'a, W: std::io::Write> Compiler<'a, W> {
Literal::Boolean(b) => {
let val = if b { "1" } else { "0" };
let temp_name = self.next_temp_name();
let loc = scope.add_variable(&temp_name, LocationRequest::Temp)?;
let loc = scope.add_variable(&temp_name, LocationRequest::Temp, None)?;
self.emit_variable_assignment(&temp_name, &loc, val)?;
Ok(Some(CompilationResult {
location: loc,
@@ -346,7 +345,7 @@ impl<'a, W: std::io::Write> Compiler<'a, W> {
_ => Ok(None), // String literals don't return values in this context typically
},
Expression::Variable(name) => {
match scope.get_location_of(&name.node) {
match scope.get_location_of(&name.node, Some(name.span)) {
Ok(loc) => Ok(Some(CompilationResult {
location: loc,
temp_name: None, // User variable, do not free
@@ -378,7 +377,7 @@ impl<'a, W: std::io::Write> Compiler<'a, W> {
// 2. Allocate a temp register for the result
let result_name = self.next_temp_name();
let loc = scope.add_variable(&result_name, LocationRequest::Temp)?;
let loc = scope.add_variable(&result_name, LocationRequest::Temp, None)?;
let reg = self.resolve_register(&loc)?;
// 3. Emit load instruction: l rX device member
@@ -386,7 +385,7 @@ impl<'a, W: std::io::Write> Compiler<'a, W> {
// 4. Cleanup
if let Some(c) = cleanup {
scope.free_temp(c)?;
scope.free_temp(c, None)?;
}
Ok(Some(CompilationResult {
@@ -410,13 +409,13 @@ impl<'a, W: std::io::Write> Compiler<'a, W> {
// Compile negation as 0 - inner
let (inner_str, cleanup) = self.compile_operand(*inner_expr, scope)?;
let result_name = self.next_temp_name();
let result_loc = scope.add_variable(&result_name, LocationRequest::Temp)?;
let result_loc = scope.add_variable(&result_name, LocationRequest::Temp, None)?;
let result_reg = self.resolve_register(&result_loc)?;
self.write_output(format!("sub {result_reg} 0 {inner_str}"))?;
if let Some(name) = cleanup {
scope.free_temp(name)?;
scope.free_temp(name, None)?;
}
Ok(Some(CompilationResult {
@@ -506,7 +505,7 @@ impl<'a, W: std::io::Write> Compiler<'a, W> {
&& let Expression::Literal(spanned_lit) = &box_expr.node
&& let Literal::Number(neg_num) = &spanned_lit.node
{
let loc = scope.add_variable(&name_str, LocationRequest::Persist)?;
let loc = scope.add_variable(&name_str, LocationRequest::Persist, Some(name_span))?;
self.emit_variable_assignment(&name_str, &loc, format!("-{neg_num}"))?;
return Ok(Some(CompilationResult {
location: loc,
@@ -517,16 +516,22 @@ impl<'a, W: std::io::Write> Compiler<'a, W> {
let (loc, temp_name) = match expr.node {
Expression::Literal(spanned_lit) => match spanned_lit.node {
Literal::Number(num) => {
let var_location =
scope.add_variable(name_str.clone(), LocationRequest::Persist)?;
let var_location = scope.add_variable(
name_str.clone(),
LocationRequest::Persist,
Some(name_span),
)?;
self.emit_variable_assignment(&name_str, &var_location, num)?;
(var_location, None)
}
Literal::Boolean(b) => {
let val = if b { "1" } else { "0" };
let var_location =
scope.add_variable(name_str.clone(), LocationRequest::Persist)?;
let var_location = scope.add_variable(
name_str.clone(),
LocationRequest::Persist,
Some(name_span),
)?;
self.emit_variable_assignment(&name_str, &var_location, val)?;
(var_location, None)
@@ -536,7 +541,8 @@ impl<'a, W: std::io::Write> Compiler<'a, W> {
Expression::Invocation(invoke_expr) => {
self.expression_function_invocation(invoke_expr, scope)?;
let loc = scope.add_variable(&name_str, LocationRequest::Persist)?;
let loc =
scope.add_variable(&name_str, LocationRequest::Persist, Some(name_span))?;
self.emit_variable_assignment(
&name_str,
&loc,
@@ -546,26 +552,22 @@ impl<'a, W: std::io::Write> Compiler<'a, W> {
}
Expression::Syscall(spanned_call) => {
let sys_call = spanned_call.node;
let SysCall::System(call) = sys_call else {
// Math syscalls might be handled differently or here
// For now assuming System returns value
return Err(Error::Unknown(
"Math syscall not yet supported in declaration".into(),
Some(spanned_call.span),
));
let res = match sys_call {
SysCall::System(s) => {
self.expression_syscall_system(s, spanned_call.span, scope)?
}
SysCall::Math(m) => self.expression_syscall_math(m, scope)?,
};
if self
.expression_syscall_system(call, spanned_call.span, scope)?
.is_none()
{
if res.is_none() {
return Err(Error::Unknown(
"SysCall did not return a value".into(),
Some(spanned_call.span),
));
};
let loc = scope.add_variable(&name_str, LocationRequest::Persist)?;
let loc =
scope.add_variable(&name_str, LocationRequest::Persist, Some(name_span))?;
self.emit_variable_assignment(
&name_str,
&loc,
@@ -577,7 +579,8 @@ impl<'a, W: std::io::Write> Compiler<'a, W> {
// Support assigning binary expressions to variables directly
Expression::Binary(bin_expr) => {
let result = self.expression_binary(bin_expr, scope)?;
let var_loc = scope.add_variable(&name_str, LocationRequest::Persist)?;
let var_loc =
scope.add_variable(&name_str, LocationRequest::Persist, Some(name_span))?;
if let CompilationResult {
location: VariableLocation::Constant(Literal::Number(num)),
@@ -593,14 +596,15 @@ impl<'a, W: std::io::Write> Compiler<'a, W> {
// Free the temp result
if let Some(name) = result.temp_name {
scope.free_temp(name)?;
scope.free_temp(name, None)?;
}
(var_loc, None)
}
}
Expression::Logical(log_expr) => {
let result = self.expression_logical(log_expr, scope)?;
let var_loc = scope.add_variable(&name_str, LocationRequest::Persist)?;
let var_loc =
scope.add_variable(&name_str, LocationRequest::Persist, Some(name_span))?;
// Move result from temp to new persistent variable
let result_reg = self.resolve_register(&result.location)?;
@@ -608,12 +612,12 @@ impl<'a, W: std::io::Write> Compiler<'a, W> {
// Free the temp result
if let Some(name) = result.temp_name {
scope.free_temp(name)?;
scope.free_temp(name, None)?;
}
(var_loc, None)
}
Expression::Variable(name) => {
let src_loc_res = scope.get_location_of(&name.node);
let src_loc_res = scope.get_location_of(&name.node, Some(name.span));
let src_loc = match src_loc_res {
Ok(l) => l,
@@ -624,7 +628,8 @@ impl<'a, W: std::io::Write> Compiler<'a, W> {
}
};
let var_loc = scope.add_variable(&name_str, LocationRequest::Persist)?;
let var_loc =
scope.add_variable(&name_str, LocationRequest::Persist, Some(name_span))?;
// Handle loading from stack if necessary
let src_str = match src_loc {
@@ -675,13 +680,14 @@ impl<'a, W: std::io::Write> Compiler<'a, W> {
));
};
let var_loc = scope.add_variable(&name_str, LocationRequest::Persist)?;
let var_loc =
scope.add_variable(&name_str, LocationRequest::Persist, Some(name_span))?;
let result_reg = self.resolve_register(&comp_res.location)?;
self.emit_variable_assignment(&name_str, &var_loc, result_reg)?;
if let Some(temp) = comp_res.temp_name {
scope.free_temp(temp)?;
scope.free_temp(temp, None)?;
}
(var_loc, None)
@@ -730,7 +736,7 @@ impl<'a, W: std::io::Write> Compiler<'a, W> {
};
Ok(CompilationResult {
location: scope.define_const(const_name.node, value)?,
location: scope.define_const(const_name.node, value, Some(const_name.span))?,
temp_name: None,
})
}
@@ -747,7 +753,8 @@ impl<'a, W: std::io::Write> Compiler<'a, W> {
match assignee.node {
Expression::Variable(identifier) => {
let location = match scope.get_location_of(&identifier.node) {
let location = match scope.get_location_of(&identifier.node, Some(identifier.span))
{
Ok(l) => l,
Err(_) => {
self.errors.push(Error::UnknownIdentifier(
@@ -791,7 +798,7 @@ impl<'a, W: std::io::Write> Compiler<'a, W> {
}
if let Some(name) = cleanup {
scope.free_temp(name)?;
scope.free_temp(name, None)?;
}
}
Expression::MemberAccess(access) => {
@@ -804,10 +811,10 @@ impl<'a, W: std::io::Write> Compiler<'a, W> {
self.write_output(format!("s {} {} {}", device_str, member.node, val_str))?;
if let Some(c) = dev_cleanup {
scope.free_temp(c)?;
scope.free_temp(c, None)?;
}
if let Some(c) = val_cleanup {
scope.free_temp(c)?;
scope.free_temp(c, None)?;
}
}
_ => {
@@ -855,7 +862,7 @@ impl<'a, W: std::io::Write> Compiler<'a, W> {
// backup all used registers to the stack
let active_registers = stack.registers().cloned().collect::<Vec<_>>();
for register in &active_registers {
stack.add_variable(format!("temp_{register}"), LocationRequest::Stack)?;
stack.add_variable(format!("temp_{register}"), LocationRequest::Stack, None)?;
self.write_output(format!("push r{register}"))?;
}
for arg in arguments {
@@ -872,14 +879,15 @@ impl<'a, W: std::io::Write> Compiler<'a, W> {
_ => {}
},
Expression::Variable(var_name) => {
let loc = match stack.get_location_of(var_name.node.clone()) {
Ok(l) => l,
Err(_) => {
self.errors
.push(Error::UnknownIdentifier(var_name.node, var_name.span));
VariableLocation::Temporary(0)
}
};
let loc =
match stack.get_location_of(var_name.node.clone(), Some(var_name.span)) {
Ok(l) => l,
Err(_) => {
self.errors
.push(Error::UnknownIdentifier(var_name.node, var_name.span));
VariableLocation::Temporary(0)
}
};
match loc {
VariableLocation::Persistant(reg) | VariableLocation::Temporary(reg) => {
@@ -916,7 +924,7 @@ impl<'a, W: std::io::Write> Compiler<'a, W> {
let reg_str = self.resolve_register(&result.location)?;
self.write_output(format!("push {reg_str}"))?;
if let Some(name) = result.temp_name {
stack.free_temp(name)?;
stack.free_temp(name, None)?;
}
}
Expression::Logical(log_expr) => {
@@ -925,7 +933,7 @@ impl<'a, W: std::io::Write> Compiler<'a, W> {
let reg_str = self.resolve_register(&result.location)?;
self.write_output(format!("push {reg_str}"))?;
if let Some(name) = result.temp_name {
stack.free_temp(name)?;
stack.free_temp(name, None)?;
}
}
Expression::MemberAccess(access) => {
@@ -947,7 +955,7 @@ impl<'a, W: std::io::Write> Compiler<'a, W> {
let reg_str = self.resolve_register(&result.location)?;
self.write_output(format!("push {reg_str}"))?;
if let Some(name) = result.temp_name {
stack.free_temp(name)?;
stack.free_temp(name, None)?;
}
} else {
self.write_output("push 0")?; // Should fail ideally
@@ -970,7 +978,7 @@ impl<'a, W: std::io::Write> Compiler<'a, W> {
for register in active_registers {
let VariableLocation::Stack(stack_offset) = stack
.get_location_of(format!("temp_{register}"))
.get_location_of(format!("temp_{register}"), None)
.map_err(Error::ScopeError)?
else {
// This shouldn't happen if we just added it
@@ -996,14 +1004,12 @@ impl<'a, W: std::io::Write> Compiler<'a, W> {
Ok(())
}
fn expression_device(
&mut self,
expr: DeviceDeclarationExpression,
span: Span,
) -> Result<(), Error> {
fn expression_device(&mut self, expr: DeviceDeclarationExpression) -> Result<(), Error> {
if self.devices.contains_key(&expr.name.node) {
self.errors
.push(Error::DuplicateIdentifier(expr.name.node.clone(), span));
self.errors.push(Error::DuplicateIdentifier(
expr.name.node.clone(),
expr.name.span,
));
// We can overwrite or ignore. Let's ignore new declaration to avoid cascading errors?
// Actually, for recovery, maybe we want to allow it so subsequent uses work?
// But we already have it.
@@ -1033,7 +1039,7 @@ impl<'a, W: std::io::Write> Compiler<'a, W> {
self.write_output(format!("beq {cond_str} 0 {else_label}"))?;
if let Some(name) = cleanup {
scope.free_temp(name)?;
scope.free_temp(name, None)?;
}
// Compile Body
@@ -1108,7 +1114,7 @@ impl<'a, W: std::io::Write> Compiler<'a, W> {
self.write_output(format!("beq {cond_str} 0 {end_label}"))?;
if let Some(name) = cleanup {
scope.free_temp(name)?;
scope.free_temp(name, None)?;
}
// Compile Body
@@ -1221,7 +1227,7 @@ impl<'a, W: std::io::Write> Compiler<'a, W> {
VariableLocation::Stack(offset) => {
// If it's on the stack, we must load it into a temp to use it as an operand
let temp_name = self.next_temp_name();
let temp_loc = scope.add_variable(&temp_name, LocationRequest::Temp)?;
let temp_loc = scope.add_variable(&temp_name, LocationRequest::Temp, None)?;
let temp_reg = self.resolve_register(&temp_loc)?;
self.write_output(format!(
@@ -1343,7 +1349,7 @@ impl<'a, W: std::io::Write> Compiler<'a, W> {
// Allocate result register
let result_name = self.next_temp_name();
let result_loc = scope.add_variable(&result_name, LocationRequest::Temp)?;
let result_loc = scope.add_variable(&result_name, LocationRequest::Temp, None)?;
let result_reg = self.resolve_register(&result_loc)?;
// Emit instruction: op result lhs rhs
@@ -1351,10 +1357,10 @@ impl<'a, W: std::io::Write> Compiler<'a, W> {
// Clean up operand temps
if let Some(name) = lhs_cleanup {
scope.free_temp(name)?;
scope.free_temp(name, None)?;
}
if let Some(name) = rhs_cleanup {
scope.free_temp(name)?;
scope.free_temp(name, None)?;
}
Ok(CompilationResult {
@@ -1373,14 +1379,14 @@ impl<'a, W: std::io::Write> Compiler<'a, W> {
let (inner_str, cleanup) = self.compile_operand(*inner, scope)?;
let result_name = self.next_temp_name();
let result_loc = scope.add_variable(&result_name, LocationRequest::Temp)?;
let result_loc = scope.add_variable(&result_name, LocationRequest::Temp, None)?;
let result_reg = self.resolve_register(&result_loc)?;
// seq rX rY 0 => if rY == 0 set rX = 1 else rX = 0
self.write_output(format!("seq {result_reg} {inner_str} 0"))?;
if let Some(name) = cleanup {
scope.free_temp(name)?;
scope.free_temp(name, None)?;
}
Ok(CompilationResult {
@@ -1408,7 +1414,7 @@ impl<'a, W: std::io::Write> Compiler<'a, W> {
// Allocate result register
let result_name = self.next_temp_name();
let result_loc = scope.add_variable(&result_name, LocationRequest::Temp)?;
let result_loc = scope.add_variable(&result_name, LocationRequest::Temp, None)?;
let result_reg = self.resolve_register(&result_loc)?;
// Emit instruction: op result lhs rhs
@@ -1416,10 +1422,10 @@ impl<'a, W: std::io::Write> Compiler<'a, W> {
// Clean up operand temps
if let Some(name) = lhs_cleanup {
scope.free_temp(name)?;
scope.free_temp(name, None)?;
}
if let Some(name) = rhs_cleanup {
scope.free_temp(name)?;
scope.free_temp(name, None)?;
}
Ok(CompilationResult {
@@ -1478,7 +1484,7 @@ impl<'a, W: std::io::Write> Compiler<'a, W> {
if let Some(comp_res) = result
&& let Some(name) = comp_res.temp_name
{
scope.free_temp(name)?;
scope.free_temp(name, None)?;
}
Ok(())
}) {
@@ -1511,49 +1517,51 @@ impl<'a, W: std::io::Write> Compiler<'a, W> {
};
match expr.node {
Expression::Variable(var_name) => match scope.get_location_of(&var_name.node) {
Ok(loc) => match loc {
VariableLocation::Temporary(reg) | VariableLocation::Persistant(reg) => {
self.write_output(format!(
"move r{} r{reg} {}",
VariableScope::RETURN_REGISTER,
debug!(self, "#returnValue")
))?;
}
VariableLocation::Constant(lit) => {
let str = extract_literal(lit, false)?;
self.write_output(format!(
"move r{} {str} {}",
VariableScope::RETURN_REGISTER,
debug!(self, "#returnValue")
))?
}
VariableLocation::Stack(offset) => {
self.write_output(format!(
"sub r{} sp {offset}",
VariableScope::TEMP_STACK_REGISTER
))?;
self.write_output(format!(
"get r{} db r{}",
VariableScope::RETURN_REGISTER,
VariableScope::TEMP_STACK_REGISTER
))?;
}
VariableLocation::Device(_) => {
return Err(Error::Unknown(
"You can not return a device from a function.".into(),
Some(var_name.span),
Expression::Variable(var_name) => {
match scope.get_location_of(&var_name.node, Some(var_name.span)) {
Ok(loc) => match loc {
VariableLocation::Temporary(reg) | VariableLocation::Persistant(reg) => {
self.write_output(format!(
"move r{} r{reg} {}",
VariableScope::RETURN_REGISTER,
debug!(self, "#returnValue")
))?;
}
VariableLocation::Constant(lit) => {
let str = extract_literal(lit, false)?;
self.write_output(format!(
"move r{} {str} {}",
VariableScope::RETURN_REGISTER,
debug!(self, "#returnValue")
))?
}
VariableLocation::Stack(offset) => {
self.write_output(format!(
"sub r{} sp {offset}",
VariableScope::TEMP_STACK_REGISTER
))?;
self.write_output(format!(
"get r{} db r{}",
VariableScope::RETURN_REGISTER,
VariableScope::TEMP_STACK_REGISTER
))?;
}
VariableLocation::Device(_) => {
return Err(Error::Unknown(
"You can not return a device from a function.".into(),
Some(var_name.span),
));
}
},
Err(_) => {
self.errors.push(Error::UnknownIdentifier(
var_name.node.clone(),
var_name.span,
));
// Proceed with dummy
}
},
Err(_) => {
self.errors.push(Error::UnknownIdentifier(
var_name.node.clone(),
var_name.span,
));
// Proceed with dummy
}
},
}
Expression::Literal(spanned_lit) => match spanned_lit.node {
Literal::Number(num) => {
self.emit_variable_assignment(
@@ -1581,7 +1589,7 @@ impl<'a, W: std::io::Write> Compiler<'a, W> {
result_reg
))?;
if let Some(name) = result.temp_name {
scope.free_temp(name)?;
scope.free_temp(name, None)?;
}
}
Expression::Logical(log_expr) => {
@@ -1593,7 +1601,7 @@ impl<'a, W: std::io::Write> Compiler<'a, W> {
result_reg
))?;
if let Some(name) = result.temp_name {
scope.free_temp(name)?;
scope.free_temp(name, None)?;
}
}
Expression::MemberAccess(access) => {
@@ -1609,7 +1617,7 @@ impl<'a, W: std::io::Write> Compiler<'a, W> {
let reg = self.resolve_register(&res.location)?;
self.write_output(format!("move r{} {}", VariableScope::RETURN_REGISTER, reg))?;
if let Some(temp) = res.temp_name {
scope.free_temp(temp)?;
scope.free_temp(temp, None)?;
}
}
}
@@ -1636,7 +1644,7 @@ impl<'a, W: std::io::Write> Compiler<'a, W> {
($($to_clean:expr),*) => {
$(
if let Some(to_clean) = $to_clean {
scope.free_temp(to_clean)?;
scope.free_temp(to_clean, None)?;
}
)*
};
@@ -1884,6 +1892,200 @@ impl<'a, W: std::io::Write> Compiler<'a, W> {
}
}
fn expression_syscall_math<'v>(
&mut self,
expr: Math,
scope: &mut VariableScope<'v>,
) -> Result<Option<CompilationResult>, Error> {
macro_rules! cleanup {
($($to_clean:expr),*) => {
$(
if let Some(to_clean) = $to_clean {
scope.free_temp(to_clean, None)?;
}
)*
};
}
match expr {
Math::Acos(expr) => {
let (var, cleanup) = self.compile_operand(*expr, scope)?;
self.write_output(format!("acos r{} {}", VariableScope::RETURN_REGISTER, var))?;
cleanup!(cleanup);
Ok(Some(CompilationResult {
location: VariableLocation::Persistant(VariableScope::RETURN_REGISTER),
temp_name: None,
}))
}
Math::Asin(expr) => {
let (var, cleanup) = self.compile_operand(*expr, scope)?;
self.write_output(format!("asin r{} {}", VariableScope::RETURN_REGISTER, var))?;
cleanup!(cleanup);
Ok(Some(CompilationResult {
location: VariableLocation::Persistant(VariableScope::RETURN_REGISTER),
temp_name: None,
}))
}
Math::Atan(expr) => {
let (var, cleanup) = self.compile_operand(*expr, scope)?;
self.write_output(format!("atan r{} {}", VariableScope::RETURN_REGISTER, var))?;
cleanup!(cleanup);
Ok(Some(CompilationResult {
location: VariableLocation::Persistant(VariableScope::RETURN_REGISTER),
temp_name: None,
}))
}
Math::Atan2(expr1, expr2) => {
let (var1, var1_cleanup) = self.compile_operand(*expr1, scope)?;
let (var2, var2_cleanup) = self.compile_operand(*expr2, scope)?;
self.write_output(format!(
"atan2 r{} {} {}",
VariableScope::RETURN_REGISTER,
var1,
var2
))?;
cleanup!(var1_cleanup, var2_cleanup);
Ok(Some(CompilationResult {
location: VariableLocation::Persistant(VariableScope::RETURN_REGISTER),
temp_name: None,
}))
}
Math::Abs(expr) => {
let (var, cleanup) = self.compile_operand(*expr, scope)?;
self.write_output(format!("abs r{} {}", VariableScope::RETURN_REGISTER, var))?;
cleanup!(cleanup);
Ok(Some(CompilationResult {
location: VariableLocation::Persistant(VariableScope::RETURN_REGISTER),
temp_name: None,
}))
}
Math::Ceil(expr) => {
let (var, cleanup) = self.compile_operand(*expr, scope)?;
self.write_output(format!("ceil r{} {}", VariableScope::RETURN_REGISTER, var))?;
cleanup!(cleanup);
Ok(Some(CompilationResult {
location: VariableLocation::Persistant(VariableScope::RETURN_REGISTER),
temp_name: None,
}))
}
Math::Cos(expr) => {
let (var, cleanup) = self.compile_operand(*expr, scope)?;
self.write_output(format!("cos r{} {}", VariableScope::RETURN_REGISTER, var))?;
cleanup!(cleanup);
Ok(Some(CompilationResult {
location: VariableLocation::Persistant(VariableScope::RETURN_REGISTER),
temp_name: None,
}))
}
Math::Floor(expr) => {
let (var, cleanup) = self.compile_operand(*expr, scope)?;
self.write_output(format!("floor r{} {}", VariableScope::RETURN_REGISTER, var))?;
cleanup!(cleanup);
Ok(Some(CompilationResult {
location: VariableLocation::Persistant(VariableScope::RETURN_REGISTER),
temp_name: None,
}))
}
Math::Log(expr) => {
let (var, cleanup) = self.compile_operand(*expr, scope)?;
self.write_output(format!("log r{} {}", VariableScope::RETURN_REGISTER, var))?;
cleanup!(cleanup);
Ok(Some(CompilationResult {
location: VariableLocation::Persistant(VariableScope::RETURN_REGISTER),
temp_name: None,
}))
}
Math::Max(expr1, expr2) => {
let (var1, clean1) = self.compile_operand(*expr1, scope)?;
let (var2, clean2) = self.compile_operand(*expr2, scope)?;
self.write_output(format!(
"max r{} {} {}",
VariableScope::RETURN_REGISTER,
var1,
var2
))?;
cleanup!(clean1, clean2);
Ok(Some(CompilationResult {
location: VariableLocation::Persistant(VariableScope::RETURN_REGISTER),
temp_name: None,
}))
}
Math::Min(expr1, expr2) => {
let (var1, clean1) = self.compile_operand(*expr1, scope)?;
let (var2, clean2) = self.compile_operand(*expr2, scope)?;
self.write_output(format!(
"min r{} {} {}",
VariableScope::RETURN_REGISTER,
var1,
var2
))?;
cleanup!(clean1, clean2);
Ok(Some(CompilationResult {
location: VariableLocation::Persistant(VariableScope::RETURN_REGISTER),
temp_name: None,
}))
}
Math::Rand => {
self.write_output(format!("rand r{}", VariableScope::RETURN_REGISTER))?;
Ok(Some(CompilationResult {
location: VariableLocation::Persistant(VariableScope::RETURN_REGISTER),
temp_name: None,
}))
}
Math::Sin(expr) => {
let (var, clean) = self.compile_operand(*expr, scope)?;
self.write_output(format!("sin r{} {}", VariableScope::RETURN_REGISTER, var))?;
cleanup!(clean);
Ok(Some(CompilationResult {
location: VariableLocation::Persistant(VariableScope::RETURN_REGISTER),
temp_name: None,
}))
}
Math::Sqrt(expr) => {
let (var, clean) = self.compile_operand(*expr, scope)?;
self.write_output(format!("sqrt r{} {}", VariableScope::RETURN_REGISTER, var))?;
cleanup!(clean);
Ok(Some(CompilationResult {
location: VariableLocation::Persistant(VariableScope::RETURN_REGISTER),
temp_name: None,
}))
}
Math::Tan(expr) => {
let (var, clean) = self.compile_operand(*expr, scope)?;
self.write_output(format!("tan r{} {}", VariableScope::RETURN_REGISTER, var))?;
cleanup!(clean);
Ok(Some(CompilationResult {
location: VariableLocation::Persistant(VariableScope::RETURN_REGISTER),
temp_name: None,
}))
}
Math::Trunc(expr) => {
let (var, clean) = self.compile_operand(*expr, scope)?;
self.write_output(format!("trunc r{} {}", VariableScope::RETURN_REGISTER, var))?;
cleanup!(clean);
Ok(Some(CompilationResult {
location: VariableLocation::Persistant(VariableScope::RETURN_REGISTER),
temp_name: None,
}))
}
}
}
/// Compile a function declaration.
/// Calees are responsible for backing up any registers they wish to use.
fn expression_function<'v>(
@@ -1926,7 +2128,11 @@ impl<'a, W: std::io::Write> Compiler<'a, W> {
.rev()
.take(VariableScope::PERSIST_REGISTER_COUNT as usize)
{
let loc = block_scope.add_variable(var_name.node.clone(), LocationRequest::Persist)?;
let loc = block_scope.add_variable(
var_name.node.clone(),
LocationRequest::Persist,
Some(var_name.span),
)?;
// we don't need to imcrement the stack offset as it's already on the stack from the
// previous scope
@@ -1959,11 +2165,19 @@ impl<'a, W: std::io::Write> Compiler<'a, W> {
// anything as they already exist on the stack, but we DO need to let our block_scope be
// aware that the variables exist on the stack (left to right)
for var_name in arguments.iter().take(arguments.len() - saved_variables) {
block_scope.add_variable(var_name.node.clone(), LocationRequest::Stack)?;
block_scope.add_variable(
var_name.node.clone(),
LocationRequest::Stack,
Some(var_name.span),
)?;
}
self.write_output("push ra")?;
block_scope.add_variable(format!("{}_ra", name.node), LocationRequest::Stack)?;
block_scope.add_variable(
format!("{}_ra", name.node),
LocationRequest::Stack,
Some(name.span),
)?;
for expr in body.0 {
match expr.node {
@@ -1976,7 +2190,7 @@ impl<'a, W: std::io::Write> Compiler<'a, W> {
if let Some(comp_res) = result
&& let Some(name) = comp_res.temp_name
{
block_scope.free_temp(name)?;
block_scope.free_temp(name, None)?;
}
Ok(())
}) {
@@ -1987,7 +2201,8 @@ impl<'a, W: std::io::Write> Compiler<'a, W> {
}
// Get the saved return address and save it back into `ra`
let ra_res = block_scope.get_location_of(format!("{}_ra", name.node));
let ra_res = block_scope.get_location_of(format!("{}_ra", name.node), Some(name.span));
let ra_stack_offset = match ra_res {
Ok(VariableLocation::Stack(offset)) => offset,
_ => {

View File

@@ -3,7 +3,8 @@
// r1 - r7 : Temporary Variables
// r8 - r14 : Persistant Variables
use parser::tree_node::Literal;
use lsp_types::{Diagnostic, DiagnosticSeverity};
use parser::tree_node::{Literal, Span};
use quick_error::quick_error;
use std::collections::{HashMap, VecDeque};
@@ -13,18 +14,33 @@ const PERSIST: [u8; 7] = [8, 9, 10, 11, 12, 13, 14];
quick_error! {
#[derive(Debug)]
pub enum Error {
DuplicateVariable(var: String) {
DuplicateVariable(var: String, span: Option<Span>) {
display("{var} already exists.")
}
UnknownVariable(var: String) {
UnknownVariable(var: String, span: Option<Span>) {
display("{var} does not exist.")
}
Unknown(reason: String) {
Unknown(reason: String, span: Option<Span>) {
display("{reason}")
}
}
}
impl From<Error> for lsp_types::Diagnostic {
fn from(value: Error) -> Self {
match value {
Error::DuplicateVariable(_, span)
| Error::UnknownVariable(_, span)
| Error::Unknown(_, span) => Diagnostic {
range: span.map(lsp_types::Range::from).unwrap_or_default(),
severity: Some(DiagnosticSeverity::ERROR),
message: value.to_string(),
..Default::default()
},
}
}
}
/// A request to store a variable at a specific register type
pub enum LocationRequest {
#[allow(dead_code)]
@@ -112,10 +128,11 @@ impl<'a> VariableScope<'a> {
&mut self,
var_name: impl Into<String>,
location: LocationRequest,
span: Option<Span>,
) -> Result<VariableLocation, Error> {
let var_name = var_name.into();
if self.var_lookup_table.contains_key(var_name.as_str()) {
return Err(Error::DuplicateVariable(var_name));
return Err(Error::DuplicateVariable(var_name, span));
}
let var_location = match location {
LocationRequest::Temp => {
@@ -151,10 +168,11 @@ impl<'a> VariableScope<'a> {
&mut self,
var_name: impl Into<String>,
value: Literal,
span: Option<Span>,
) -> Result<VariableLocation, Error> {
let var_name = var_name.into();
if self.var_lookup_table.contains_key(&var_name) {
return Err(Error::DuplicateVariable(var_name));
return Err(Error::DuplicateVariable(var_name, span));
}
let new_value = VariableLocation::Constant(value);
@@ -163,7 +181,11 @@ impl<'a> VariableScope<'a> {
Ok(new_value)
}
pub fn get_location_of(&self, var_name: impl Into<String>) -> Result<VariableLocation, Error> {
pub fn get_location_of(
&self,
var_name: impl Into<String>,
span: Option<Span>,
) -> Result<VariableLocation, Error> {
let var_name = var_name.into();
// 1. Check this scope
@@ -180,7 +202,7 @@ impl<'a> VariableScope<'a> {
// 2. Recursively check parent
if let Some(parent) = self.parent {
let loc = parent.get_location_of(var_name)?;
let loc = parent.get_location_of(var_name, span)?;
if let VariableLocation::Stack(parent_offset) = loc {
return Ok(VariableLocation::Stack(parent_offset + self.stack_offset));
@@ -188,7 +210,7 @@ impl<'a> VariableScope<'a> {
return Ok(loc);
}
Err(Error::UnknownVariable(var_name))
Err(Error::UnknownVariable(var_name, span))
}
pub fn has_parent(&self) -> bool {
@@ -196,10 +218,14 @@ impl<'a> VariableScope<'a> {
}
#[allow(dead_code)]
pub fn free_temp(&mut self, var_name: impl Into<String>) -> Result<(), Error> {
pub fn free_temp(
&mut self,
var_name: impl Into<String>,
span: Option<Span>,
) -> Result<(), Error> {
let var_name = var_name.into();
let Some(location) = self.var_lookup_table.remove(var_name.as_str()) else {
return Err(Error::UnknownVariable(var_name));
return Err(Error::UnknownVariable(var_name, span));
};
match location {
@@ -207,9 +233,10 @@ impl<'a> VariableScope<'a> {
self.temporary_vars.push_back(t);
}
VariableLocation::Persistant(_) => {
return Err(Error::UnknownVariable(String::from(
"Attempted to free a `let` variable.",
)));
return Err(Error::UnknownVariable(
String::from("Attempted to free a `let` variable."),
span,
));
}
_ => {}
};

View File

@@ -4,7 +4,7 @@ mod test;
pub mod sys_call;
pub mod tree_node;
use crate::sys_call::System;
use crate::sys_call::{Math, System};
use quick_error::quick_error;
use std::io::SeekFrom;
use sys_call::SysCall;
@@ -1349,11 +1349,24 @@ impl<'a> Parser<'a> {
}
fn literal(&mut self) -> Result<Literal, Error> {
let current_token = self.current_token.as_ref().ok_or(Error::UnexpectedEOF)?;
let current_token = self.current_token.clone().ok_or(Error::UnexpectedEOF)?;
let literal = match current_token.token_type {
TokenType::Number(num) => Literal::Number(num),
TokenType::String(ref string) => Literal::String(string.clone()),
TokenType::Boolean(boolean) => Literal::Boolean(boolean),
TokenType::Symbol(Symbol::Minus) => match self.get_next()? {
Some(Token {
token_type: TokenType::Number(num),
..
}) => Literal::Number(-*num),
Some(wrong_token) => {
return Err(Error::UnexpectedToken(
Self::token_to_span(wrong_token),
wrong_token.clone(),
));
}
None => return Err(Error::UnexpectedEOF),
},
_ => {
return Err(Error::UnexpectedToken(
self.current_span(),
@@ -1636,6 +1649,7 @@ impl<'a> Parser<'a> {
let invocation = self.invocation()?;
match invocation.name.node.as_str() {
// System SysCalls
"yield" => {
check_length(self, &invocation.arguments, 0)?;
Ok(SysCall::System(sys_call::System::Yield))
@@ -1809,6 +1823,119 @@ impl<'a> Parser<'a> {
expr,
)))
}
// Math SysCalls
"acos" => {
check_length(self, &invocation.arguments, 1)?;
let mut args = invocation.arguments.into_iter();
let tmp = args.next().ok_or(Error::UnexpectedEOF)?;
Ok(SysCall::Math(Math::Acos(boxed!(tmp))))
}
"asin" => {
check_length(self, &invocation.arguments, 1)?;
let mut args = invocation.arguments.into_iter();
let tmp = args.next().ok_or(Error::UnexpectedEOF)?;
Ok(SysCall::Math(Math::Asin(boxed!(tmp))))
}
"atan" => {
check_length(self, &invocation.arguments, 1)?;
let mut args = invocation.arguments.into_iter();
let expr = args.next().ok_or(Error::UnexpectedEOF)?;
Ok(SysCall::Math(Math::Atan(boxed!(expr))))
}
"atan2" => {
check_length(self, &invocation.arguments, 2)?;
let mut args = invocation.arguments.into_iter();
let arg1 = args.next().ok_or(Error::UnexpectedEOF)?;
let arg2 = args.next().ok_or(Error::UnexpectedEOF)?;
Ok(SysCall::Math(Math::Atan2(boxed!(arg1), boxed!(arg2))))
}
"abs" => {
check_length(self, &invocation.arguments, 1)?;
let mut args = invocation.arguments.into_iter();
let expr = args.next().ok_or(Error::UnexpectedEOF)?;
Ok(SysCall::Math(Math::Abs(boxed!(expr))))
}
"ceil" => {
check_length(self, &invocation.arguments, 1)?;
let mut args = invocation.arguments.into_iter();
let arg = args.next().ok_or(Error::UnexpectedEOF)?;
Ok(SysCall::Math(Math::Ceil(boxed!(arg))))
}
"cos" => {
check_length(self, &invocation.arguments, 1)?;
let mut args = invocation.arguments.into_iter();
let arg = args.next().ok_or(Error::UnexpectedEOF)?;
Ok(SysCall::Math(Math::Cos(boxed!(arg))))
}
"floor" => {
check_length(self, &invocation.arguments, 1)?;
let mut args = invocation.arguments.into_iter();
let arg = args.next().ok_or(Error::UnexpectedEOF)?;
Ok(SysCall::Math(Math::Floor(boxed!(arg))))
}
"log" => {
check_length(self, &invocation.arguments, 1)?;
let mut args = invocation.arguments.into_iter();
let arg = args.next().ok_or(Error::UnexpectedEOF)?;
Ok(SysCall::Math(Math::Log(boxed!(arg))))
}
"max" => {
check_length(self, &invocation.arguments, 2)?;
let mut args = invocation.arguments.into_iter();
let arg1 = args.next().ok_or(Error::UnexpectedEOF)?;
let arg2 = args.next().ok_or(Error::UnexpectedEOF)?;
Ok(SysCall::Math(Math::Max(boxed!(arg1), boxed!(arg2))))
}
"min" => {
check_length(self, &invocation.arguments, 2)?;
let mut args = invocation.arguments.into_iter();
let arg1 = args.next().ok_or(Error::UnexpectedEOF)?;
let arg2 = args.next().ok_or(Error::UnexpectedEOF)?;
Ok(SysCall::Math(Math::Min(boxed!(arg1), boxed!(arg2))))
}
"rand" => {
check_length(self, &invocation.arguments, 0)?;
Ok(SysCall::Math(Math::Rand))
}
"sin" => {
check_length(self, &invocation.arguments, 1)?;
let mut args = invocation.arguments.into_iter();
let arg = args.next().ok_or(Error::UnexpectedEOF)?;
Ok(SysCall::Math(Math::Sin(boxed!(arg))))
}
"sqrt" => {
check_length(self, &invocation.arguments, 1)?;
let mut args = invocation.arguments.into_iter();
let arg = args.next().ok_or(Error::UnexpectedEOF)?;
Ok(SysCall::Math(Math::Sqrt(boxed!(arg))))
}
"tan" => {
check_length(self, &invocation.arguments, 1)?;
let mut args = invocation.arguments.into_iter();
let arg = args.next().ok_or(Error::UnexpectedEOF)?;
Ok(SysCall::Math(Math::Tan(boxed!(arg))))
}
"trunc" => {
check_length(self, &invocation.arguments, 1)?;
let mut args = invocation.arguments.into_iter();
let arg = args.next().ok_or(Error::UnexpectedEOF)?;
Ok(SysCall::Math(Math::Trunc(boxed!(arg))))
}
_ => Err(Error::UnsupportedKeyword(
self.current_span(),
self.current_token.clone().ok_or(Error::UnexpectedEOF)?,

View File

@@ -10,67 +10,67 @@ documented! {
/// `acos r? a(r?|num)`
/// ## Slang
/// `(number|var).acos();`
Acos(LiteralOrVariable),
Acos(Box<Spanned<Expression>>),
/// Returns the angle in radians whose sine is the specified number.
/// ## IC10
/// `asin r? a(r?|num)`
/// ## Slang
/// `(number|var).asin();`
Asin(LiteralOrVariable),
Asin(Box<Spanned<Expression>>),
/// Returns the angle in radians whose tangent is the specified number.
/// ## IC10
/// `atan r? a(r?|num)`
/// ## Slang
/// `(number|var).atan();`
Atan(LiteralOrVariable),
Atan(Box<Spanned<Expression>>),
/// Returns the angle in radians whose tangent is the quotient of the specified numbers.
/// ## IC10
/// `atan2 r? a(r?|num) b(r?|num)`
/// ## Slang
/// `(number|var).atan2((number|var));`
Atan2(LiteralOrVariable, LiteralOrVariable),
Atan2(Box<Spanned<Expression>>, Box<Spanned<Expression>>),
/// Gets the absolute value of a number.
/// ## IC10
/// `abs r? a(r?|num)`
/// ## Slang
/// `(number|var).abs();`
Abs(LiteralOrVariable),
Abs(Box<Spanned<Expression>>),
/// Rounds a number up to the nearest whole number.
/// ## IC10
/// `ceil r? a(r?|num)`
/// ## Slang
/// `(number|var).ceil();`
Ceil(LiteralOrVariable),
Ceil(Box<Spanned<Expression>>),
/// Returns the cosine of the specified angle in radians.
/// ## IC10
/// `cos r? a(r?|num)`
/// ## Slang
/// `(number|var).cos();`
Cos(LiteralOrVariable),
Cos(Box<Spanned<Expression>>),
/// Rounds a number down to the nearest whole number.
/// ## IC10
/// `floor r? a(r?|num)`
/// ## Slang
/// `(number|var).floor();`
Floor(LiteralOrVariable),
Floor(Box<Spanned<Expression>>),
/// Computes the natural logarithm of a number.
/// ## IC10
/// `log r? a(r?|num)`
/// ## Slang
/// `(number|var).log();`
Log(LiteralOrVariable),
Log(Box<Spanned<Expression>>),
/// Computes the maximum of two numbers.
/// ## IC10
/// `max r? a(r?|num) b(r?|num)`
/// ## Slang
/// `(number|var).max((number|var));`
Max(LiteralOrVariable, LiteralOrVariable),
Max(Box<Spanned<Expression>>, Box<Spanned<Expression>>),
/// Computes the minimum of two numbers.
/// ## IC10
/// `min r? a(r?|num) b(r?|num)`
/// ## Slang
/// `(number|var).min((number|var));`
Min(LiteralOrVariable, LiteralOrVariable),
Min(Box<Spanned<Expression>>, Box<Spanned<Expression>>),
/// Gets a random number between 0 and 1.
/// ## IC10
/// `rand r?`
@@ -82,25 +82,25 @@ documented! {
/// `sin r? a(r?|num)`
/// ## Slang
/// `(number|var).sin();`
Sin(LiteralOrVariable),
Sin(Box<Spanned<Expression>>),
/// Computes the square root of a number.
/// ## IC10
/// `sqrt r? a(r?|num)`
/// ## Slang
/// `(number|var).sqrt();`
Sqrt(LiteralOrVariable),
Sqrt(Box<Spanned<Expression>>),
/// Returns the tangent of the specified angle in radians.
/// ## IC10
/// `tan r? a(r?|num)`
/// ## Slang
/// `(number|var).tan();`
Tan(LiteralOrVariable),
Tan(Box<Spanned<Expression>>),
/// Truncates a number by removing the decimal portion.
/// ## IC10
/// `trunc r? a(r?|num)`
/// ## Slang
/// `(number|var).trunc();`
Trunc(LiteralOrVariable),
Trunc(Box<Spanned<Expression>>),
}
}
@@ -231,6 +231,7 @@ impl std::fmt::Display for System {
}
}
#[allow(clippy::large_enum_variant)]
#[derive(Debug, PartialEq, Eq)]
/// This represents built in functions that cannot be overwritten, but can be invoked by the user as functions.
pub enum SysCall {

View File

@@ -151,3 +151,12 @@ fn test_const_hash_expression() -> Result<()> {
assert_eq!("(const i = hash(\"item\"))", expr.to_string());
Ok(())
}
#[test]
fn test_negative_literal_const() -> Result<()> {
let expr = parser!(r#"const i = -123"#).parse()?.unwrap();
assert_eq!("(const i = -123)", expr.to_string());
Ok(())
}