Unified the C# mod and the Rust compiler into a monorepo

This commit is contained in:
2025-11-26 16:02:00 -07:00
parent 346b6e49e6
commit 353dc16944
34 changed files with 253 additions and 14 deletions

View File

@@ -0,0 +1,12 @@
[package]
name = "parser"
version = "0.1.0"
edition = "2024"
[dependencies]
quick-error = { workspace = true }
tokenizer = { path = "../tokenizer" }
[dev-dependencies]
anyhow = { version = "1" }

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,226 @@
use crate::tree_node::{Expression, Literal};
use super::LiteralOrVariable;
#[derive(Debug, PartialEq, Eq)]
pub enum Math {
/// Returns the angle in radians whose cosine is the specified number.
/// ## In Game
/// `acos r? a(r?|num)`
Acos(LiteralOrVariable),
/// Returns the angle in radians whose sine is the specified number.
/// ## In Game
/// `asin r? a(r?|num)`
Asin(LiteralOrVariable),
/// Returns the angle in radians whose tangent is the specified number.
/// ## In Game
/// `atan r? a(r?|num)`
Atan(LiteralOrVariable),
/// Returns the angle in radians whose tangent is the quotient of the specified numbers.
/// ## In Game
/// `atan2 r? a(r?|num) b(r?|num)`
Atan2(LiteralOrVariable, LiteralOrVariable),
/// Gets the absolute value of a number.
/// ## In Game
/// `abs r? a(r?|num)`
Abs(LiteralOrVariable),
/// Rounds a number up to the nearest whole number.
/// ## In Game
/// `ceil r? a(r?|num)`
Ceil(LiteralOrVariable),
/// Returns the cosine of the specified angle in radians.
/// ## In Game
/// cos r? a(r?|num)
Cos(LiteralOrVariable),
/// Rounds a number down to the nearest whole number.
/// ## In Game
/// `floor r? a(r?|num)`
Floor(LiteralOrVariable),
/// Computes the natural logarithm of a number.
/// ## In Game
/// `log r? a(r?|num)`
Log(LiteralOrVariable),
/// Computes the maximum of two numbers.
/// ## In Game
/// `max r? a(r?|num) b(r?|num)`
Max(LiteralOrVariable, LiteralOrVariable),
/// Computes the minimum of two numbers.
/// ## In Game
/// `min r? a(r?|num) b(r?|num)`
Min(LiteralOrVariable, LiteralOrVariable),
/// Gets a random number between 0 and 1.
/// ## In Game
/// `rand r?`
Rand,
/// Returns the sine of the specified angle in radians.
/// ## In Game
/// `sin r? a(r?|num)`
Sin(LiteralOrVariable),
/// Computes the square root of a number.
/// ## In Game
/// `sqrt r? a(r?|num)`
Sqrt(LiteralOrVariable),
/// Returns the tangent of the specified angle in radians.
/// ## In Game
/// `tan r? a(r?|num)`
Tan(LiteralOrVariable),
/// Truncates a number by removing the decimal portion.
/// ## In Game
/// `trunc r? a(r?|num)`
Trunc(LiteralOrVariable),
}
impl std::fmt::Display for Math {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
Math::Acos(a) => write!(f, "acos({})", a),
Math::Asin(a) => write!(f, "asin({})", a),
Math::Atan(a) => write!(f, "atan({})", a),
Math::Atan2(a, b) => write!(f, "atan2({}, {})", a, b),
Math::Abs(a) => write!(f, "abs({})", a),
Math::Ceil(a) => write!(f, "ceil({})", a),
Math::Cos(a) => write!(f, "cos({})", a),
Math::Floor(a) => write!(f, "floor({})", a),
Math::Log(a) => write!(f, "log({})", a),
Math::Max(a, b) => write!(f, "max({}, {})", a, b),
Math::Min(a, b) => write!(f, "min({}, {})", a, b),
Math::Rand => write!(f, "rand()"),
Math::Sin(a) => write!(f, "sin({})", a),
Math::Sqrt(a) => write!(f, "sqrt({})", a),
Math::Tan(a) => write!(f, "tan({})", a),
Math::Trunc(a) => write!(f, "trunc({})", a),
}
}
}
#[derive(Debug, PartialEq, Eq)]
pub enum System {
/// Pauses execution for exactly 1 tick and then resumes.
/// ## In Game
/// yield
Yield,
/// Represents a function that can be called to sleep for a certain amount of time.
/// ## In Game
/// `sleep a(r?|num)`
Sleep(Box<Expression>),
/// Gets the in-game hash for a specific prefab name.
/// ## In Game
/// `HASH("prefabName")`
Hash(Literal),
/// Represents a function which loads a device variable into a register.
/// ## In Game
/// `l r? d? var`
/// ## Examples
/// `l r0 d0 Setting`
/// `l r1 d5 Pressure`
LoadFromDevice(LiteralOrVariable, Literal),
/// Function which gets a LogicType from all connected network devices that match
/// the provided device hash and name, aggregating them via a batchMode
/// ## In Game
/// lbn r? deviceHash nameHash logicType batchMode
/// ## Examples
/// lbn r0 HASH("StructureWallLight") HASH("wallLight") On Minimum
LoadBatchNamed(LiteralOrVariable, Box<Expression>, Literal, Literal),
/// Loads a LogicType from all connected network devices, aggregating them via a
/// batchMode
/// ## In Game
/// lb r? deviceHash loggicType batchMode
/// ## Examples
/// lb r0 HASH("StructureWallLight") On Minimum
LoadBatch(LiteralOrVariable, Literal, Literal),
/// Represents a function which stores a setting into a specific device.
/// ## In Game
/// `s d? logicType r?`
/// ## Example
/// `s d0 Setting r0`
SetOnDevice(LiteralOrVariable, Literal, Box<Expression>),
/// Represents a function which stores a setting to all devices that match
/// the given deviceHash
/// ## In Game
/// `sb deviceHash logictype r?`
/// ## Example
/// `sb HASH("Doors") Lock 1`
SetOnDeviceBatched(LiteralOrVariable, Literal, Box<Expression>),
/// Represents a function which stores a setting to all devices that match
/// both the given deviceHash AND the given nameHash
/// ## In Game
/// `sbn deviceHash nameHash logicType r?`
/// ## Example
/// `sbn HASH("Doors") HASH("Exterior") Lock 1`
SetOnDeviceBatchedNamed(
LiteralOrVariable,
LiteralOrVariable,
Literal,
Box<Expression>,
),
}
impl std::fmt::Display for System {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
System::Yield => write!(f, "yield()"),
System::Sleep(a) => write!(f, "sleep({})", a),
System::Hash(a) => write!(f, "hash({})", a),
System::LoadFromDevice(a, b) => write!(f, "loadFromDevice({}, {})", a, b),
System::LoadBatch(a, b, c) => write!(f, "loadBatch({}, {}, {})", a, b, c),
System::LoadBatchNamed(a, b, c, d) => {
write!(f, "loadBatchNamed({}, {}, {}, {})", a, b, c, d)
}
System::SetOnDevice(a, b, c) => write!(f, "setOnDevice({}, {}, {})", a, b, c),
System::SetOnDeviceBatched(a, b, c) => {
write!(f, "setOnDeviceBatched({}, {}, {})", a, b, c)
}
System::SetOnDeviceBatchedNamed(a, b, c, d) => {
write!(f, "setOnDeviceBatchedNamed({}, {}, {}, {})", a, b, c, d)
}
}
}
}
#[derive(Debug, PartialEq, Eq)]
/// This represents built in functions that cannot be overwritten, but can be invoked by the user as functions.
pub enum SysCall {
System(System),
/// Represents any mathmatical function that can be called.
Math(Math),
}
impl std::fmt::Display for SysCall {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
SysCall::System(s) => write!(f, "{}", s),
SysCall::Math(m) => write!(f, "{}", m),
}
}
}
impl SysCall {
pub fn is_syscall(identifier: &str) -> bool {
matches!(
identifier,
"yield"
| "sleep"
| "hash"
| "loadFromDevice"
| "setOnDevice"
| "setOnDeviceBatched"
| "setOnDeviceBatchedNamed"
| "acos"
| "asin"
| "atan"
| "atan2"
| "abs"
| "ceil"
| "cos"
| "floor"
| "log"
| "max"
| "min"
| "rand"
| "sin"
| "sqrt"
| "tan"
| "trunc"
)
}
}

View File

@@ -0,0 +1,21 @@
use tokenizer::Tokenizer;
use crate::Parser;
#[test]
fn test_block() -> anyhow::Result<()> {
let mut parser = crate::parser!(
r#"
{
let x = 5;
let y = 10;
}
"#
);
let expression = parser.parse()?.unwrap();
assert_eq!("{ (let x = 5); (let y = 10); }", expression.to_string());
Ok(())
}

View File

@@ -0,0 +1,115 @@
#[macro_export]
macro_rules! parser {
($input:expr) => {
Parser::new(Tokenizer::from($input.to_owned()))
};
}
mod blocks;
use super::Parser;
use super::Tokenizer;
use anyhow::Result;
#[test]
fn test_unsupported_keywords() -> Result<()> {
let mut parser = parser!("enum x;");
assert!(parser.parse().is_err());
let mut parser = parser!("if x {}");
assert!(parser.parse().is_err());
let mut parser = parser!("else {}");
assert!(parser.parse().is_err());
Ok(())
}
#[test]
fn test_declarations() -> Result<()> {
let input = r#"
let x = 5;
// The below line should fail
let y = 234
"#;
let tokenizer = Tokenizer::from(input.to_owned());
let mut parser = Parser::new(tokenizer);
let expression = parser.parse()?.unwrap();
assert_eq!("(let x = 5)", expression.to_string());
assert!(parser.parse().is_err());
Ok(())
}
#[test]
fn test_function_expression() -> Result<()> {
let input = r#"
// This is a function. The parser is starting to get more complex
fn add(x, y) {
let z = x;
}
"#;
let tokenizer = Tokenizer::from(input.to_owned());
let mut parser = Parser::new(tokenizer);
let expression = parser.parse()?.unwrap();
assert_eq!(
"(fn add(x, y) { { (let z = x); } })",
expression.to_string()
);
Ok(())
}
#[test]
fn test_function_invocation() -> Result<()> {
let input = r#"
add();
"#;
let tokenizer = Tokenizer::from(input.to_owned());
let mut parser = Parser::new(tokenizer);
let expression = parser.parse()?.unwrap();
assert_eq!("add()", expression.to_string());
Ok(())
}
#[test]
fn test_priority_expression() -> Result<()> {
let input = r#"
let x = (4);
"#;
let tokenizer = Tokenizer::from(input.to_owned());
let mut parser = Parser::new(tokenizer);
let expression = parser.parse()?.unwrap();
assert_eq!("(let x = (4))", expression.to_string());
Ok(())
}
#[test]
fn test_binary_expression() -> Result<()> {
let expr = parser!("4 ** 2 + 5 ** 2").parse()?.unwrap();
assert_eq!("((4 ** 2) + (5 ** 2))", expr.to_string());
let expr = parser!("2 ** 3 ** 4").parse()?.unwrap();
assert_eq!("(2 ** (3 ** 4))", expr.to_string());
let expr = parser!("45 * 2 - 15 / 5 + 5 ** 2").parse()?.unwrap();
assert_eq!("(((45 * 2) - (15 / 5)) + (5 ** 2))", expr.to_string());
let expr = parser!("(5 - 2) * 10").parse()?.unwrap();
assert_eq!("(((5 - 2)) * 10)", expr.to_string());
Ok(())
}

View File

@@ -0,0 +1,258 @@
use super::sys_call::SysCall;
use tokenizer::token::Number;
#[derive(Debug, Eq, PartialEq, Clone)]
pub enum Literal {
Number(Number),
String(String),
Boolean(bool),
}
impl std::fmt::Display for Literal {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
Literal::Number(n) => write!(f, "{}", n),
Literal::String(s) => write!(f, "\"{}\"", s),
Literal::Boolean(b) => write!(f, "{}", if *b { 1 } else { 0 }),
}
}
}
#[derive(Debug, PartialEq, Eq)]
pub enum BinaryExpression {
Add(Box<Expression>, Box<Expression>),
Multiply(Box<Expression>, Box<Expression>),
Divide(Box<Expression>, Box<Expression>),
Subtract(Box<Expression>, Box<Expression>),
Exponent(Box<Expression>, Box<Expression>),
Modulo(Box<Expression>, Box<Expression>),
}
impl std::fmt::Display for BinaryExpression {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
BinaryExpression::Add(l, r) => write!(f, "({} + {})", l, r),
BinaryExpression::Multiply(l, r) => write!(f, "({} * {})", l, r),
BinaryExpression::Divide(l, r) => write!(f, "({} / {})", l, r),
BinaryExpression::Subtract(l, r) => write!(f, "({} - {})", l, r),
BinaryExpression::Exponent(l, r) => write!(f, "({} ** {})", l, r),
BinaryExpression::Modulo(l, r) => write!(f, "({} % {})", l, r),
}
}
}
#[derive(Debug, PartialEq, Eq)]
pub enum LogicalExpression {
And(Box<Expression>, Box<Expression>),
Or(Box<Expression>, Box<Expression>),
Not(Box<Expression>),
Equal(Box<Expression>, Box<Expression>),
NotEqual(Box<Expression>, Box<Expression>),
GreaterThan(Box<Expression>, Box<Expression>),
GreaterThanOrEqual(Box<Expression>, Box<Expression>),
LessThan(Box<Expression>, Box<Expression>),
LessThanOrEqual(Box<Expression>, Box<Expression>),
}
impl std::fmt::Display for LogicalExpression {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
LogicalExpression::And(l, r) => write!(f, "({} && {})", l, r),
LogicalExpression::Or(l, r) => write!(f, "({} || {})", l, r),
LogicalExpression::Not(e) => write!(f, "(!{})", e),
LogicalExpression::Equal(l, r) => write!(f, "({} == {})", l, r),
LogicalExpression::NotEqual(l, r) => write!(f, "({} != {})", l, r),
LogicalExpression::GreaterThan(l, r) => write!(f, "({} > {})", l, r),
LogicalExpression::GreaterThanOrEqual(l, r) => write!(f, "({} >= {})", l, r),
LogicalExpression::LessThan(l, r) => write!(f, "({} < {})", l, r),
LogicalExpression::LessThanOrEqual(l, r) => write!(f, "({} <= {})", l, r),
}
}
}
#[derive(Debug, PartialEq, Eq)]
pub struct AssignmentExpression {
pub identifier: String,
pub expression: Box<Expression>,
}
impl std::fmt::Display for AssignmentExpression {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "({} = {})", self.identifier, self.expression)
}
}
#[derive(Debug, PartialEq, Eq)]
pub struct FunctionExpression {
pub name: String,
pub arguments: Vec<String>,
pub body: BlockExpression,
}
impl std::fmt::Display for FunctionExpression {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(
f,
"(fn {}({}) {{ {} }})",
self.name,
self.arguments.to_vec().join(", "),
self.body
)
}
}
#[derive(Debug, PartialEq, Eq)]
pub struct BlockExpression(pub Vec<Expression>);
impl std::fmt::Display for BlockExpression {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(
f,
"{{ {}; }}",
self.0
.iter()
.map(|e| e.to_string())
.collect::<Vec<String>>()
.join("; ")
)
}
}
#[derive(Debug, PartialEq, Eq)]
pub struct InvocationExpression {
pub name: String,
pub arguments: Vec<Expression>,
}
impl std::fmt::Display for InvocationExpression {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(
f,
"{}({})",
self.name,
self.arguments
.iter()
.map(|e| e.to_string())
.collect::<Vec<String>>()
.join(", ")
)
}
}
#[derive(Debug, PartialEq, Eq)]
pub enum LiteralOrVariable {
Literal(Literal),
Variable(String),
}
impl std::fmt::Display for LiteralOrVariable {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
LiteralOrVariable::Literal(l) => write!(f, "{}", l),
LiteralOrVariable::Variable(v) => write!(f, "{}", v),
}
}
}
#[derive(Debug, PartialEq, Eq)]
pub struct DeviceDeclarationExpression {
/// any variable-like name
pub name: String,
/// The device port, ex. (db, d0, d1, d2, d3, d4, d5)
pub device: String,
}
impl std::fmt::Display for DeviceDeclarationExpression {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "(device {} = {})", self.name, self.device)
}
}
#[derive(Debug, PartialEq, Eq)]
pub struct IfExpression {
pub condition: Box<Expression>,
pub body: BlockExpression,
pub else_branch: Option<Box<Expression>>,
}
impl std::fmt::Display for IfExpression {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "(if ({}) {}", self.condition, self.body)?;
if let Some(else_branch) = &self.else_branch {
write!(f, " else {}", else_branch)?;
}
write!(f, ")")
}
}
#[derive(Debug, PartialEq, Eq)]
pub struct LoopExpression {
pub body: BlockExpression,
}
impl std::fmt::Display for LoopExpression {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "(loop {})", self.body)
}
}
#[derive(Debug, PartialEq, Eq)]
pub struct WhileExpression {
pub condition: Box<Expression>,
pub body: BlockExpression,
}
impl std::fmt::Display for WhileExpression {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "(while {} {})", self.condition, self.body)
}
}
#[derive(Debug, PartialEq, Eq)]
pub enum Expression {
Assignment(AssignmentExpression),
Binary(BinaryExpression),
Block(BlockExpression),
Break,
Continue,
Declaration(String, Box<Expression>),
DeviceDeclaration(DeviceDeclarationExpression),
Function(FunctionExpression),
If(IfExpression),
Invocation(InvocationExpression),
Literal(Literal),
Logical(LogicalExpression),
Loop(LoopExpression),
Negation(Box<Expression>),
Priority(Box<Expression>),
Return(Box<Expression>),
Syscall(SysCall),
Variable(String),
While(WhileExpression),
}
impl std::fmt::Display for Expression {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
Expression::Assignment(e) => write!(f, "{}", e),
Expression::Binary(e) => write!(f, "{}", e),
Expression::Block(e) => write!(f, "{}", e),
Expression::Break => write!(f, "break"),
Expression::Continue => write!(f, "continue"),
Expression::Declaration(id, e) => write!(f, "(let {} = {})", id, e),
Expression::DeviceDeclaration(e) => write!(f, "{}", e),
Expression::Function(e) => write!(f, "{}", e),
Expression::If(e) => write!(f, "{}", e),
Expression::Invocation(e) => write!(f, "{}", e),
Expression::Literal(l) => write!(f, "{}", l),
Expression::Logical(e) => write!(f, "{}", e),
Expression::Loop(e) => write!(f, "{}", e),
Expression::Negation(e) => write!(f, "(-{})", e),
Expression::Priority(e) => write!(f, "({})", e),
Expression::Return(e) => write!(f, "(return {})", e),
Expression::Syscall(e) => write!(f, "{}", e),
Expression::Variable(id) => write!(f, "{}", id),
Expression::While(e) => write!(f, "{}", e),
}
}
}